JOURNAL BROWSE
Search
Advanced SearchSearch Tips
FINITE ORTHOGONAL POLYNOMIALS SATISFYING A SECOND ORDER DIFFERENTIAL EQUATION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
FINITE ORTHOGONAL POLYNOMIALS SATISFYING A SECOND ORDER DIFFERENTIAL EQUATION
Yoo, Byeong-Hoon; Lee, Dong-Won;
  PDF(new window)
 Abstract
The orthogonality of polynomials plays an important role in many areas and in many cases only finite orthogonalities are used. Concerning this fact we find characterizations of a finite orthogonal polynomial system satisfying a second order differential equation and then give several examples.
 Keywords
finite orthogonality;orthogonal polynomials;differential equation;three term recurrence relation;
 Language
English
 Cited by
1.
Characterizations of distributional weights for weak orthogonal polynomials satisfying a second-order differential equation, Annali di Matematica Pura ed Applicata (1923 -), 2015, 194, 5, 1319  crossref(new windwow)
 References
1.
S. Bochner, Uber Sturm-Liouvillesche Polynomsysteme, Math. Z. 29 (1929), 730-736 crossref(new window)

2.
T. S. Chihara, An introduction to orthogonal polynomials, Gordon and Breach, New York, 1977

3.
J. Farvard, Sur les polynomes de Tchebicheff, C. R. Acad. Paris. 200 (1935), 2052-2053

4.
R. Koekoek and H. G. Meijer, A generalization of Laguerre polynomials, SIAM J. Math. Anal. 24 (1993), no. 3, 768-782 crossref(new window)

5.
K. H. Kwon, J. K. Lee, and B. H. Yoo, Characterizations of classical orthogonal polynomials, Results Math. 24 (1993), 119-128 crossref(new window)

6.
K. H. K Won and L. L. Littlejohn, The orthogonality of the Laguerre polynomials {$L^{(-k)}_{n}(x)$} for positive integers k, Ann. Numer. Math. 2 (1995), 289-303

7.
K. H. K Won and L. L. Littlejohn, Classification of classical orthogonal polynomials, J. Korean Math. Soc. 34 (1997), 973-1008

8.
K. H. K Won and L. L. Littlejohn, Sobolev orthogonal polynomials and second-order differential equations, Rocky Mountain J. Math. 28 (1998), 547-594 crossref(new window)

9.
E. N. Laguerre, Sur l'integral $\int_{x}^{\infty}x^{-1}e^{-x}dx$, Bull. de la societe Math. de France 7 (1879), 72-81

10.
R. D. Morton and A. M. Krall, Distributional weight functions for orthogonal polynomials, SIAM J. Math. Anal. 9 (1978), no. 4, 604-626 crossref(new window)

11.
N. J. Sonine, Recherches sur les fonctions Cylindriques et le deueloppmeni des fonctions continues en Series, Math. Ann. 16 (1880), 1-80 crossref(new window)

12.
G. Szego, Orthogonal Polynomials, Amer. Math. Soc. Colloquim Publications, New York, 1959