JOURNAL BROWSE
Search
Advanced SearchSearch Tips
LOCALIZATION PROPERTY AND FRAMES II
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
LOCALIZATION PROPERTY AND FRAMES II
HA YOUNG-HWA; RYU JU-YEON;
  PDF(new window)
 Abstract
Localization of sequences with respect to Riesz bases for Hilbert spaces are comparable with perturbation of Riesz bases or frames. Grochenig first introduced the notion of localization. We introduce more general definition of localization and show that exponentially localized sequences and polynomially localized sequences with respect to Riesz bases are Bessel sequences. Furthermore, they are frames provided some additional conditions are satisfied.
 Keywords
frame;Bessel sequence;Riesz basis;exponentially localized;polynomially localized;localization of frames;
 Language
English
 Cited by
 References
1.
P. G. Casazza and O. Christensen, Approximation of the inverse frame opertor and applications to Gabor frames, J. Approx. Theory 103 (2000), 338-356 crossref(new window)

2.
O. Christensen, An introduction to frames and Riesz basis, Birkhauser, Boston, 2003

3.
O. Christensen, A Paley-Wiener theorem for frames, Proc. Amer. Math. Soc. 123 (1995), 2199-2201

4.
O. Christensen, Frame perturbations, Proc. Amer. Math. Soc. 123 (1995), 1217-1220

5.
E. Cordero and K. Grochenig, Localization of frames II, Appl. Comput. Harmon. Anal. 17 (2004), 29-47 crossref(new window)

6.
I. Daubechies, Ten Lectures on Wavelets, SIAM Conference Series in Applied Mathematiccs, SIAM, Boston, 1992

7.
K. Grochenig, Localization of frames, Banach frames, and the invertiblility of the frame operator, J. Fourier Anal. Appl. 10 (2004), 105-132 crossref(new window)

8.
K. Grochenig, Localized frames are finite unions of Riesz sequences, Adv. Comput. Math. 18 (2003), 149-157 crossref(new window)

9.
K. Grochenig, Foundations of time-frequency analysis, Birkhauser, Boston, 2001

10.
Y. H. Ha and J. Y. Ryu, Localization property and frames, Honam Math. J. 27 (2005), 233-241

11.
R. Young, An Introduction to Nonharmonic Fourier Series, Academic Press, NewYork, 1980