JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SOME APPLICATIONS OF EXTREMAL LENGTH TO ANALYTIC FUNCTIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SOME APPLICATIONS OF EXTREMAL LENGTH TO ANALYTIC FUNCTIONS
CHANG BO-HYUN;
  PDF(new window)
 Abstract
We consider some applications of extremal length to the boundary behavior of analytic functions and derive theorems in connection with the conformal mappings. It shows us the usefulness of the method of extremal length. And we present some geometric applications of extremal length. The method of extremal length lead to simple proofs of theorems.
 Keywords
extremal length;boundary behavior;
 Language
English
 Cited by
1.
SOME APPLICATIONS OF RESISTANT LENGTH TO ANALYTIC FUNCTIONS,;

Journal of applied mathematics & informatics, 2009. vol.27. 5_6, pp.1473-1479
2.
SOME APPLICATIONS OF EXTREMAL LENGTH TO CONFORMAL IMBEDDINGS,;

충청수학회지, 2009. vol.22. 2, pp.211-216
3.
A NOTE ON EXTREMAL LENGTH AND CONFORMAL IMBEDDINGS,;

Journal of applied mathematics & informatics, 2010. vol.28. 5_6, pp.1315-1322
4.
LOGARITHMIC CAPACITY UNDER CONFORMAL MAPPINGS OF THE UNIT DISC,;

충청수학회지, 2010. vol.23. 3, pp.463-470
 References
1.
L. V. Ahlfors, Conformal Invariants. Topics in Geometric Function Theory, McGraw-Hill, New York, 1973

2.
L. V. Ahlfors, Lectures on Quasiconformal Mappings, Van Nostrand, 1987

3.
L. V. Ahlfors and A. Beurling, Conformal invariants and function-theoretic null-sets, Acta. Math. 83 (1950), 101-129 crossref(new window)

4.
L. V. Ahlfors and L. Sario, Riemann Surfaces, Princeton Math. Ser. 26 (1960)

5.
E. F. Collingwood and A. J. Lohwater, The Theory of Cluster Sets, Cambridge Univ. Press, London and New York, 1966

6.
H. Grotzsch, Uber einige extremal probleme der konformer abbildung, Ber. Verh. Sachs. Akad. Wiss., Leipzig. 80 (1928), 367-376

7.
K. Haliste, Estimates of harmonic measure, Ark. Mat. 6 (1965), 1-31 crossref(new window)

8.
G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, Univ. Press, Cambridge, 1934

9.
Lehto and K. I. Virtanen, Quasiconformal Mappings in the Plane, Springer- Verlag, New York, 1973

10.
J. E. Mcmillan, Arbitrary functions defined on plane sets, Michigan Math. J., 14 (1967), 445-447 crossref(new window)

11.
W. Rudin, Real and Complex Analysis, 2nd ed., McGraw-Hill, New Delhi, 1974

12.
L. Sario and K. Oikawa, Capacity Functions, Springer-Verlag, New York, 1969

13.
J. Vaisala, Lectures on n-Dimensional Quasiconformal Mappings, Springer- Verlag, New York, 1971

14.
J. Vaisala, On quasiconformal mappings in space, Ann. Acad. Sci. Fenn. Ser. AI. 298 (1961), 1-35