JOURNAL BROWSE
Search
Advanced SearchSearch Tips
RIBAUCOUR TRANSFORMATIONS OF THE SURFACES WITH CONSTANT POSITIVE GAUSSIAN CURVATURES IN THE 3-DIMENSIONAL EUCLIDEAN SPACE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
RIBAUCOUR TRANSFORMATIONS OF THE SURFACES WITH CONSTANT POSITIVE GAUSSIAN CURVATURES IN THE 3-DIMENSIONAL EUCLIDEAN SPACE
PARK, Joon-Sang;
  PDF(new window)
 Abstract
We associate the surfaces of constant Gaussian curvature K = 1 with no umbilics to a subclass of the solutions of . From this correspondence, we can construct new K = 1 surfaces from a known K = 1 surface by using a kind of dressing actions on the solutions of this system.
 Keywords
Gaussian curvature;shih-Gordon equation;G/K-system;flat connection;sphere congruence;Ribaucour transformation;
 Language
English
 Cited by
 References
1.
L. Bianchi, Vorlesungen uber Differentialgeometrie, Leipzig, Berlin, Druck und Verlag von B. G. Teubner (1910)

2.
M. Bruck, X. Du, J. Park, and C. L. Terng, The submanifold geometry of real Grassmannian systems, Mem. Amer. Math. Soc. 155 (2002), No. 735

3.
F. Burtall, Isothermic surfaces: conformal geometry, Cifford algebras and integrable systems, Intergrable systems, Geometry and Topology, International Press, to appear

4.
J. Inoguch, Characterizations of Backlund transformations of constant mean curvature surfaces, International Jour Math. 16 (2005), 101-110 crossref(new window)

5.
U. Hertrich-Jeromin and F. Pedit, Remarks on the Darboux transform of isothermic surfaces, Doc. Math. 2 (1997), 313-333

6.
J. Park, Riemannian submanifolds in Lorentzian mamifolds with the some constant curvatures, Bull. Korean Math. Soc. 39 (2002), 93-104

7.
J. Park, Lorentzian submanifolds in Lorentzian space form with the same constant curvatures, Geom. Ded. 108 (2004), 93-104 crossref(new window)

8.
C. L. Terng, Soliton equations and differential geometry, Jour. Diff. Geom. 45 (1997), 407-445