JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON A FINSLER SPACE WITH (α, β)-METRIC AND CERTAIN METRICAL NON-LINEAR CONNECTION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON A FINSLER SPACE WITH (α, β)-METRIC AND CERTAIN METRICAL NON-LINEAR CONNECTION
PARK HONG-SUH; PARK HA-YONG; KIM BYUNG-DOO;
  PDF(new window)
 Abstract
The purpose of this paper is to introduce an L-metrical non-linear connection and investigate a conformal change in the Finsler space with . The (v)h-torsion and (v)hvtorsion in the Finsler space with L-metrical connection are obtained. The conformal invariant connection and conformal invariant curvature are found in the above Finsler space.
 Keywords
Finsler space;L-metrical non-linear connection;(v)h-torsiion;(v)hv-torsion;conformal invariant;
 Language
English
 Cited by
1.
On an R-Randersmth-Root Space, Geometry, 2013, 2013, 1  crossref(new windwow)
2.
Randers space with special nonlinear connection, Lobachevskii Journal of Mathematics, 2008, 29, 1, 27  crossref(new windwow)
 References
1.
P. L. Antonelli, R. S. Ingarden, and M. Matsumoto, The theory of sprays and Finsler spaces with applications in physics and biology, Kluwer Acad. Publ., The Netherlands, 1993

2.
M. Hashiguchi, On conformal transformations of Finsler metrics, J. Math. Kyoto Univ. 16 (1976), 25-50

3.
Y. Ichijyo, On the condition for a {V, H}-manifold to be locally Mincowskian or coformally flat, J. Math. Tokushima Univ. 12 (1979), 13-21

4.
Y. Ichijyo and M. Hashiguchi, On the condition that a Randers space be conformal flat, Rep. Fac. Sci. Kagoshima Univ., (Math. Phys. Chem.) 22 (1989), 7-14

5.
L. Kozma and S. Baran, On metrical homogeneous connections of a Finsler point space, Publ. Math. Debrecen 49 (1996), 59-68

6.
M. Matsumoto, Theory of Finsler spaces with (${\alpha},{\beta}$)-metric, Rep. on Math. Phys.31 (1992), 43-83 crossref(new window)