JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A RELATIVE REIDEMEISTER ORBIT NUMBER
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A RELATIVE REIDEMEISTER ORBIT NUMBER
Lee, Seoung-Ho; Yoon, Yeon-Soo;
  PDF(new window)
 Abstract
The Reidemeister orbit set plays a crucial role in the Nielsen type theory of periodic orbits, much as the Reidemeister set does in Nielsen fixed point theory. In this paper, extending Cardona and Wong's work on relative Reidemeister numbers, we show that the Reidemeister orbit numbers can be used to calculate the relative essential orbit numbers. We also apply the relative Reidemeister orbit number to study periodic orbits of fibre preserving maps.
 Keywords
Reidemeister sets;relative Reidemeister orbit numbers;Nielsen type relative essential n-orbit numbers;
 Language
English
 Cited by
1.
A NIELSEN TYPE NUMBER OF FIBRE PRESERVING MAPS,;

대한수학회논문집, 2013. vol.28. 2, pp.361-369 crossref(new window)
1.
A NIELSEN TYPE NUMBER OF FIBRE PRESERVING MAPS, Communications of the Korean Mathematical Society, 2013, 28, 2, 361  crossref(new windwow)
 References
1.
R. F. Brown, The Lefschetz Fixed Point Theorem, Scott, Foresman and Co., Glenview, IL, 1971

2.
F. Cardona and P. Wong, On the computation of the relative Nielsen number, Topology Appl. 116 (2001), 29-41 crossref(new window)

3.
F. Cardona and P. Wong, The relative Reidemeister numbers of fiber map pairs, Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center 21 (2003), 131-145

4.
P. R. Heath, A Nielsen type number for fibre preserving maps, Topology and Appl. 53 (1993), 19-35 crossref(new window)

5.
P. R. Heath and E. C. Keppelmann, Fibre techniques in Nielsen periodic point theory on nil and solvmanifolds II, Topology and Appl. 106 (2000), 149-167 crossref(new window)

6.
P. R. Heath, R. Piccinini and C. You, Nielsen-type numbers for periodic points I, in: Topological Fixed Point Theory and Applications, Proceedings, (Tianjin 1988), B. Jiang (ed.), Lecture Notes in Math. 1411, Springer, Berlin 1989, 88- 106

7.
P. R. Heath, R. Piccinini and C. You, Nielsen type numbers for periodic points on nonconnected spaces, Topology Appl. 63 (1995), 97-116 crossref(new window)

8.
P. R. Heath, R. Piccinini and C. You, Nielsen type numbers for periodic points on pairs of spaces, Topology Appl. 63 (1995), 117-138 crossref(new window)

9.
B. Jiang, Lectures on Nielsen Fixed Point Theory, Contemporary Mathematics 14 (AMS, Providence, RI 1983)

10.
B. Jiang, S. H. Lee and M. H. Woo, Reidemeister orbit sets, Fund. Math. 183 (2004), 139-156 crossref(new window)

11.
H. Schirmer, A relative Nielsen number, Paciffic J. Math. 122 (1986), 459-473 crossref(new window)

12.
E. Spanier, Algebraic Topology, McGraw-Hill, New York 1966

13.
P. Wong, Fixed point theory for homogeneous spaces, Amer. J. Math. 120 (1998), 23-42 crossref(new window)

14.
C. You, Fixed Point Classes of a Fibre Map, Paciffic J. Math. 100 (1992), no. 1, 217-241

15.
X. Zhao, A relative Nielsen number for the complement, in: Topological Fixed Point Theory and Applications, Proceedings, (Tianjin 1988), B. Jiang (ed.), Lecture Notes in Math. 1411, Springer, Berlin 1989, 189-199