JOURNAL BROWSE
Search
Advanced SearchSearch Tips
INJECTIVE REPRESENTATIONS OF QUIVERS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
INJECTIVE REPRESENTATIONS OF QUIVERS
Park, Sang-Won; Shin, De-Ra;
  PDF(new window)
 Abstract
We prove that is an injective representation of a quiver $Q
 Keywords
module;quiver;representation of quiver;injective representation of quiver;
 Language
English
 Cited by
1.
PROJECTIVE PROPERTIES OF REPRESENTATIONS OF A QUIVER OF THE FORM $Q={\bullet}\,^{\rightarrow}_{\rightarrow}\,{\bullet}{\rightarrow}{\bullet}$,;;

Korean Journal of Mathematics, 2009. vol.17. 4, pp.429-436
2.
PROJECTIVE AND INJECTIVE PROPERTIES OF REPRESENTATIONS OF A QUIVER $Q ={\bullet}{\rightarrow}{\bullet}{\rightarrow}{\bullet}$,;;

Korean Journal of Mathematics, 2009. vol.17. 3, pp.271-281
3.
PROJECTIVE PROPERTIES OF REPRESENTATIONS OF A QUIVER Q = • → • AS R[x]-MODULES,;;;

Korean Journal of Mathematics, 2010. vol.18. 3, pp.243-252
1.
PROJECTIVE REPRESENTATIONS OF A QUIVER WITH THREE VERTICES AND TWO EDGES AS R[x]-MODULES, Korean Journal of Mathematics, 2012, 20, 3, 343  crossref(new windwow)
 References
1.
E. Enochs, I. Herzog, and S. Park, Cyclic quiver ring and polycyclic-by-finite groupring, Houston J. Math. 25 (1999), no. 1, 1-13

2.
E. Enochs and I. Herzog, A homotopy of quiver morphism with applications to representations, Canad. J. Math. 51 (1999), no. 2, 294-308 crossref(new window)

3.
E. Enochs, J. R. Rozas, L. Oyonarte, and S. Park, Noetherian quivers, Quaestiones Mathematicae 25 (2002), no. 4, 531-538 crossref(new window)

4.
S. Park, Projective representations of quivers, Internart. J. Math. Math. Sci. 31 (2002), no. 2, 97-101 crossref(new window)