JOURNAL BROWSE
Search
Advanced SearchSearch Tips
NOTES ON THE BERGMAN PROJECTION TYPE OPERATOR IN ℂn
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
NOTES ON THE BERGMAN PROJECTION TYPE OPERATOR IN ℂn
Choi, Ki-Seong;
  PDF(new window)
 Abstract
In this paper, we will define the Bergman projection type operator Pr and find conditions on which the operator Pr is bound-ed on (B, dv). By using the properties of the Bergman projection type operator Pr, we will show that if (B, dv), then . We will also show that if $(1-{\parallel}{\omega}{\parallel}^2)\; \frac{{\nabla}f(\omega){\cdot}z}{},\;{\in}L^p{B,\;dv),\;then\;f{\in}L_a^p(B,\;dv)$
 Keywords
Bergman space;Bergman projection;
 Language
English
 Cited by
1.
ON SOME MEASURE RELATED WITH POISSON INTEGRAL ON THE UNIT BALL,;;

충청수학회지, 2009. vol.22. 1, pp.89-99
2.
ON DUALITY OF WEIGHTED BLOCH SPACES IN ${\mathbb{C}}^n$,;;

충청수학회지, 2010. vol.23. 3, pp.523-534
3.
SOME RESULTS RELATED WITH POISSON-SZEG$\ddot{O}$ KERNEL AND BEREZIN TRANSFORM,;;

충청수학회지, 2011. vol.24. 3, pp.417-426
4.
BLOCH-TYPE SPACE RELATED WITH NORMAL FUNCTION,;

충청수학회지, 2011. vol.24. 3, pp.533-541
5.
NOTES ON THE SPACE OF DIRICHLET TYPE AND WEIGHTED BESOV SPACE,;

충청수학회지, 2013. vol.26. 2, pp.393-402 crossref(new window)
1.
NOTES ON BERGMAN PROJECTION TYPE OPERATOR RELATED WITH BESOV SPACE, Journal of the Chungcheong Mathematical Society, 2015, 28, 3, 473  crossref(new windwow)
2.
NOTES ON THE SPACE OF DIRICHLET TYPE AND WEIGHTED BESOV SPACE, Journal of the Chungcheng Mathematical Society, 2013, 26, 2, 393  crossref(new windwow)
 References
1.
J. Anderson, J. Clunie and Ch. Pommerenke, On Bloch functions and normal functions, J. Reine Angew. Math. 270 (1974), 12-37

2.
J. Arazy, S. D. Fisher, and J. Peetre, Hankel operators on weighted Bergman spaces, Amer. J. Math. 110 (1988), 989-1054 crossref(new window)

3.
S. Axler, The Bergman spaces, the Bloch space and commutators of multiplica tion operators, Duke Math. J. 53 (1986), 315-332 crossref(new window)

4.
D. Bekolle, C. A. Berger, L. A. Coburn, and K. H. Zhu, BMO in the Bergman metric on bounded symmetric domain, J. Funct. Anal. 93 (1990), 310-350 crossref(new window)

5.
K. S. Choi, Lipschitz type inequality in Weighted Bloch spaces Bq, J. Korean Math. Soc. 39 (2002), no. 2, 277-287

6.
K. S. Choi, Little Hankel operators on Weighted Bloch spaces in $C^n$, Commun. Korean Math. Soc. 18 (2003), no. 3, 469-479 crossref(new window)

7.
J. B. Conway, A course in Functional Analysis, Springer Verlag, New York (1985)

8.
K. T. Hahn, Holomorphic mappings of the hyperbolic space into the complex Euclidean space and Bloch theorem, Canadian J. Math. 27 (1975), 446-458 crossref(new window)

9.
K. T. Hahn and E. H. Youssfi, M-harmonic Besov p-spaces and Hankel operators in the Bergman space on the unit ball in $C^n$, Manuscripta Math 71 (1991), 67-81 crossref(new window)

10.
K. T. Hahn and K. S. Choi, Weighted Bloch spaces in $C^n$, J. Korean Math. Soc. 35 (1998), no. 1, 177-189

11.
L. Hwa, Harmonic analysis of functions of several complex variables in the classical domains, Amer. Math. Soc. providence, R. I. 6 (1963)

12.
W. Rudin, Function theory in the unit ball of $C^n$, Springer Verlag, New York (1980)

13.
R. M. Timoney, Bloch functions of several variables, J. Bull. London Math. Soc. 12 (1980), 241-267 crossref(new window)

14.
K. H. Zhu, Duality and Hankel operators on the Bergman spaces of bounded symmetric domains, J. Funct. Anal. 81 (1988), 260-278 crossref(new window)

15.
K. H. Zhu, Multipliers of BMO in the Bergman metric with applications to Toeplitz operators, J. Funct. Anal. 87 (1989), 31-50 crossref(new window)

16.
K. H. Zhu, Operator theory in function spaces, Marcel Dekker, New York (1990)