JOURNAL BROWSE
Search
Advanced SearchSearch Tips
COMMON FIXED POINTS OF COMPATIBLE MAPS OF TYPE (β) ON FUZZY METRIC SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
COMMON FIXED POINTS OF COMPATIBLE MAPS OF TYPE (β) ON FUZZY METRIC SPACES
KUTUKCU SERVET; TURKOGLU DURAN; YILDIZ CEMIL;
  PDF(new window)
 Abstract
In this paper we prove a common fixed point theorem for compatible maps of type on fuzzy metric spaces with arbitrary continuous t-norm.
 Keywords
fuzzy metric spaces;common fixed point;
 Language
English
 Cited by
1.
A COMMON FIXED POINT THEOREM FOR A SEQUENCE OF SELF MAPS IN INTUITIONISTIC FUZZY METRIC SPACES,;

대한수학회논문집, 2006. vol.21. 4, pp.679-687 crossref(new window)
2.
COMMON FIXED POINT OF COMPATIBLE MAPS OF TYPE (γ) ON COMPLETE FUZZY METRIC SPACES,;;;

대한수학회논문집, 2009. vol.24. 4, pp.581-594 crossref(new window)
3.
On Fixed Point Theorem of Weak Compatible Maps of Type(γ) in Complete Intuitionistic Fuzzy Metric Space,;

International Journal of Fuzzy Logic and Intelligent Systems, 2011. vol.11. 1, pp.38-43 crossref(new window)
1.
Common Fixed Point Theorems for Weakly Compatible Mappings in Fuzzy Metric Spaces Using (JCLR) Property, Applied Mathematics, 2012, 03, 09, 976  crossref(new windwow)
2.
On Fixed Point Theorem of Weak Compatible Maps of Type(γ) in Complete Intuitionistic Fuzzy Metric Space, International Journal of Fuzzy Logic and Intelligent Systems, 2011, 11, 1, 38  crossref(new windwow)
 References
1.
S. Banach, Theorie les operations lineaires, Manograie Mathematyezne, Warsaw, Poland, 1932

2.
Y. J. Cho, Fixed points in fuzzy metric spaces, J. Fuzzy Math. 4 (1997), 949-962

3.
Y. J. Cho, H. K. Pathak, S. M. Kang, and J. S. Jung, Common fixed points of compatible maps of type (${\beta}$) on fuzzy metric spaces, Fuzzy Sets and Systems 93 (1998), 99-111 crossref(new window)

4.
Z. K. Deng, Fuzzy pseduo-metric spaces, J. Math. Anal. Appl. 86 (1982), 74-95 crossref(new window)

5.
M. Edelstein, On fixed and periodic points under contraction mappings, J. London Math. Soc. 37 (1962) 74-79 crossref(new window)

6.
M. A. Erceg, Metric spaces in fuzzy set theory, J. Math. Anal. Appl. 69 (1979), 205-230 crossref(new window)

7.
J. X. Fang, On fixed point theorems in fuzzy metric spaces, Fuzzy Sets and Systems 46 (1992), 107-113 crossref(new window)

8.
A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems 64 (1994), 395-399 crossref(new window)

9.
M. Grabiec, Fixed points in fuzzy metric space, Fuzzy Sets and Systems 27 (1988), 385-389 crossref(new window)

10.
O. Hadzic and E. Pap, Fixed point theory in probabilistic metric spaces, Kluwer Acad. Publ., 2001

11.
O. Hadzic and E. Pap, A fixed point theorem for multivalued mappins in probabilistic metric spaces and an application in fuzzy metric spaces, Fuzzy Sets and Systems 127 (2002), 333-344 crossref(new window)

12.
I. Istratescu, A fixed point theorem for mappings with a probabilistic contractive iterate, Rev. Roumaire. Math. Pure Appl. 26 (1981), 431-435

13.
G. Jungck, Commuting mappings and fixed points, Amer. Math. Monthly 83 (1976), 261-263 crossref(new window)

14.
G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. Math. Sci. 9 (1986), 771-779 crossref(new window)

15.
O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Sets and Systems 12 (1984), 215-229 crossref(new window)

16.
E. P. Klement, R. Mesiar, and E. Pap, Triangular norms. Position paper I: Basic analytical and algebraic properties, Fuzzy Sets and Systems 143 (2004), 5-16 crossref(new window)

17.
E. P. Klement, R. Mesiar, and E. Pap, Problems on triangular norms and related operators, Fuzzy Sets and Systems 145 (2004), 471-479 crossref(new window)

18.
O. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetika (Praha) 11 (1975), 326-334

19.
S. N. Mishra, N. Sharma, and S. L. Singh, Common fixed points of maps on fuzzy metric spaces, Internat. J. Math. Sci. 17 (1994), 253-258 crossref(new window)

20.
H. K. Pathak, Y. J. Cho, S. S. Chang, and S. M. Kang, Compatible mappings of type (P), Rev. Res. Univ. Novi Sad., to appear

21.
B. E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc. 226 (1977), 257-290 crossref(new window)

22.
B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math. 10 (1960), 313-334 crossref(new window)

23.
V. M. Sehgal and A. T. Bharucha-Reid, Fixed point of contraction mapping on PM spaces, Math. Systems Theory 6 (1972), 97-100 crossref(new window)

24.
S. Sessa, On weak commutativity condition of mappings in fixed point consider- ations, Publ. Inst. Math. Beagrad 32 (46) (1982), 149-153

25.
S. Sharma, Common Fixed point theorems in fuzzy metric spaces, Fuzzy Sets and Systems 127 (2002), 345-352 crossref(new window)

26.
S. L. Singh and S. Kasahara, On some recent results on common fixed points, Indian J. Pure Appl. Math. 13 (1982), 757-761

27.
S. L. Singh and B. Ram, Common fixed points of commuting mappings in 2- metric spaces, Math. Sem. Notes Kobe Univ. 10 (1982), 197-208

28.
L. A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338-353 crossref(new window)