JOURNAL BROWSE
Search
Advanced SearchSearch Tips
DERIVATIONS OF A RESTRICTED WEYL TYPE ALGEBRA ON A LAURENT EXTENSION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
DERIVATIONS OF A RESTRICTED WEYL TYPE ALGEBRA ON A LAURENT EXTENSION
Choi Seul-Hee;
  PDF(new window)
 Abstract
Several authors find all the derivations of an algebra [1], [3], [7]. A Weyl type non-associative algebra and its sub algebra are defined in the paper [2], [3], [10]. All the derivations of the non-associative algebra is found in this paper [4]. We find all the derivations of the non-associative algebra in this paper [5].
 Keywords
simple;non-associative algebra;right identity;annihilator;idempotent;derivation;
 Language
English
 Cited by
1.
AN EXTENDED NON-ASSOCIATIVE ALGEBRA,;

호남수학학술지, 2007. vol.29. 2, pp.213-222 crossref(new window)
1.
AN EXTENDED NON-ASSOCIATIVE ALGEBRA, Honam Mathematical Journal, 2007, 29, 2, 213  crossref(new windwow)
 References
1.
M. H. Ahmadi, K. -B. Nam, and J. Pakianathan, Lie admissible non-associative algebras, Algebra Colloquium, Vol. 12, No. 1, World Scientific, March, 2005, 113-120 crossref(new window)

2.
S. H. Choi and K. -B. Nam, The Derivation of a Restricted Weyl Type Non-Associative Algebra, Hadronic Journal, Vol. 28, Number 3, Hadronic Press, June, 2005, 287-295

3.
S. H. Choi, Weyl Type Non-Associative Algebra II, SEAMS Bull Mathematics, Vol. 29, 2005

4.
S. H. Choi, Derivations of a restricted Weyl Type Algebra I, Rocky Mountain Math. Journal, Appear, 2005

5.
I. N. Herstein, Noncommutative Rings, Carus Mathematical Monographs, Mathematical association of America, 100-101

6.
J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, New York, 1987, 7-21

7.
V. G. Kac, Description of Filtered Lie Algebra with which Graded Lie algebras of Cartan type are Associated, Izv. Akad. Nauk SSSR, Ser. Mat. Tom 38 (1974), 832-834

8.
T. Ikeda, N. Kawamoto, Ki-Bong Nam, A class of simple subalgebras of generalized Witt algebras, Groups-Korea '98(Pusan), de Gruyter, Berlin, 2000, 189-202

9.
A. I. Kostrikin and I. R. Safarevic, Graded Lie algebras of finite characteristic, Math. USSR Izv. 3 (1970), No. 2, 237-240 crossref(new window)

10.
K. -S. Lee and K. -B. Nam, Some W -type algebras I., J. Appl. Algebra Discrete Struct. 2 (2004), No. 1, 39-46

11.
K. -B. Nam, Generalized Wand H type Lie Algebras, Algebra Colloquium, 1999, 329-340

12.
K. -B. Nam and S. H. Choi, Automorphism group of non-associative algebras WN$_{2,0,01}$, J. Computational Mathematics and Optimization, Vol. 1 (2005), No. 1, 35-44

13.
D. Passman, Simple Lie Algebras of Witt-Type, Journal of Algebra 206 (1998), 682-692 crossref(new window)

14.
A. N. Rudakov, Groups of Automorphisms of Infinite-Dimensional Simple Lie Algebras, Math. USSR-Izvestija 3 (1969), 707-722 crossref(new window)