JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON A GENERALIZED DIFFERENCE SEQUENCE SPACES DEFINED BY A MODULUS FUNCTION AND STATISTICAL CONVERGENCE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON A GENERALIZED DIFFERENCE SEQUENCE SPACES DEFINED BY A MODULUS FUNCTION AND STATISTICAL CONVERGENCE
Bataineh Ahmad H.A.;
  PDF(new window)
 Abstract
In this paper, we define the sequence spaces: , where E is any Banach space, and u = () be any sequence such that for any k , examine them and give various properties and inclusion relations on these spaces. We also show that the space may be represented as a space. These are generalizations of those defined and studied by M. Et., Y. Altin and H. Altinok [7].
 Keywords
difference sequence;statistical convergence;modulus function;
 Language
English
 Cited by
 References
1.
T. Bilgen, On statistical convergence, An. Univ. Timisoara Ser. Math. Inform. 32 (1994), no. 1, 3-7

2.
J. S. Connor, The statistical and strong p-Oesaro convergence of sequences, Analysis 8 (1988), 47-63

3.
H. Fast, Sur la convergence statistique, Collaq. Math. 2 (1951), 241-244

4.
M. Et and M. Basarir, On some new generalized difference sequence spaces, Periodica Mathematica Hungaria 35 (1997), no. 3, 169-175 crossref(new window)

5.
M. Et and C. A. Bektas, Generalized strongly (V, ${\lambda}$)-summable difference sequences defined by Orlicz functions, (under communication)

6.
M. Et and R. Colak, On some generalized difference sequence spaces, Soochow J. of Math. 21 (1995), 377-386

7.
M. Et., Y. Altin and H. Altinok, On some generalized difference sequence spaces defined by a modulus junctions, Filomat 17 (2003), 23-33

8.
J. A. Friday, On statistical convergence, Analysis, 5 (1985), 301-313

9.
P. Kampthan and M. Gupta, Sequence Spaces and Series, Marcel Dekkar Inc., New York, 1980

10.
H. Kizmaz, On certain sequence spaces, Cnad. Math. Bull. 24 (1981), 169-176 crossref(new window)

11.
E. Kolak, The statistical convergence in sequence spaces, Acta. Comment. Univ. Tartu 928 (1991), 41-52

12.
L. Leindler, Uber die la Vallee-Pousinsche Summierbarkeit Allgemeiner Orthogonal-reihen, Acta Math. Acad. Sci. Hungar 16 (1965), 375-387 crossref(new window)

13.
Mursallen, ${\lambda}$-statistical convergence, Math. Slovaca 50 (2000), 111-115

14.
I. J. Maddox, Elements of Functional Analysis, Cambridge Univ. Press, 1970

15.
I. J. Maddox, Sequence spaces defined by a modulus, Mat. Proc. Camb. Phil. Soc. 100 (1986), 161-166

16.
E. Malkowsky and S. D. Parashar, Matrix transformations in sequences of bounded and convergent difference sequences of order m, Analysis 17 (1997), 87-97 crossref(new window)

17.
E. Malkowsky and E. Savas, Some ${\lambda}$-sequence spaces defined by a modulus, Archivum Mathematicum 36 (2000), 219-228

18.
W. H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math. 25 (1973), 973-978 crossref(new window)

19.
T. Salat, On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), 139-150

20.
E. Savas, On some generalized sequence spaces defined by a modulus, Indian J. pure and appl. Math. 30 (1999), no. 5, 459-464

21.
A. Wilansky, Summabilitry Through Functional Analysis, North-Holland Mathematics Studies, (85), North-Holland, 1984