JOURNAL BROWSE
Search
Advanced SearchSearch Tips
POLYNOMIAL-FITTING INTERPOLATION RULES GENERATED BY A LINEAR FUNCTIONAL
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
POLYNOMIAL-FITTING INTERPOLATION RULES GENERATED BY A LINEAR FUNCTIONAL
Kim Kyung-Joong;
  PDF(new window)
 Abstract
We construct polynomial-fitting interpolation rules to agree with a function f and its first derivative f` at equally spaced nodes on the interval of interest by introducing a linear functional with which we produce systems of linear equations. We also introduce a matrix whose determinant is not zero. Such a property makes it possible to solve the linear systems and then leads to a conclusion that the rules are uniquely determined for the nodes. An example is investigated to compare the rules with Hermite interpolating polynomials.
 Keywords
Interpolation rule;Hermite polynomial;
 Language
English
 Cited by
1.
HIGH-DEGREE INTERPOLATION RULES GENERATED BY A LINEAR FUNCTIONAL,;

대한수학회논문집, 2007. vol.22. 3, pp.475-485 crossref(new window)
 References
1.
K. E. Atkinson, An Introduction to Numerical Analysis, John Wiley and Sons, 1989

2.
R. L. Burden and J. D. Faires, Numerical Analysis, Brooks/Cole, 2001

3.
L. Gr. Ixaru, Operations on Oscillatory Functions, Comput. Phys. Comm. 105 (1997), 1-19 crossref(new window)

4.
L. Gr. Ixaru and B. Paternoster, A Gauss Quadrature Rule for Oscillatory Integrands, Comput. Phys, Comm. 133 (2001), 177-188 crossref(new window)

5.
L. Gr. Ixaru, M. Rizea, H. De Meyer, G. Vanden Berghe, Weights of the exponential fitting multistep algorithms for first order ODEs, J. Comput. Appl. Math. 132 (2001), 83-93 crossref(new window)

6.
L. Gr. Ixaru, G. Vanden Berghe and M. De Meyer, Exponentially fitted variable two-step BDF algorithm for first order ODEs, Comput. Phys. Comm. 150 (2003), 116-128 crossref(new window)

7.
L. Gr. Ixaru, G. Vanden Berghe and M. De Meyer, Frequency evaluation in exponential fitting multistep algorithms for ODEs, J. Comput. Appl. Math. 140 (2002), 423-434 crossref(new window)

8.
K. J. Kim, Two-frequency-dependent Gauss quadrature rules, J. Comput. Appl. Math. 174 (2005), 43-55 crossref(new window)

9.
K. J. Kim, R. Cools and L. Gr. Ixaru, Quadrature rules using first derivatives for oscillatory integrands, J. Comput. Appl. Math. 140 (2002), 479-497 crossref(new window)

10.
V. I. Krylov, Approximate Calculation of Integrals, Macmillan, New York, 1962

11.
W. Rudin, Principles of Mathematical Analysis, McGRAW-Hill, Singapore, 1976