JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A BMO TYPE CHARACTERIZATION OF WEIGHTED LIPSCHITZ FUNCTIONS IN TERMS OF THE BEREZIN TRANSFORM
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A BMO TYPE CHARACTERIZATION OF WEIGHTED LIPSCHITZ FUNCTIONS IN TERMS OF THE BEREZIN TRANSFORM
Cho, Hong-Rae; Seo, Yeoung-Tae;
  PDF(new window)
 Abstract
The Berezin transform is the analogue of the Poisson transform in the Bergman spaces. Dyakonov characterize the holomorphic weighted Lipschitz function in the unit disk in terms of the Possion integral. In this paper, we characterize the harmonic weighted Lispchitz function in terms of the Berezin transform instead of the Poisson integral.
 Keywords
weighted Lipschitz space of harmonic functions;Berezin transform;a regular modulus of continuity;
 Language
English
 Cited by
 References
1.
P. Ahern, M. Flores and W. Rudin, An invariant volume-mean value Property, J. Funct. Anal. 111 (1993), 380-397 crossref(new window)

2.
Bekolle, Berger, Coburn, and Zhu, BMO in the Bergman metric on bounded symmetric domains, J. Func. Anal. 93 (1990), 310-350 crossref(new window)

3.
F. A. Berezin, Covariant and contravariant symbols of operators, Math. USSR-Izv.6 (1972), 1117-1151 crossref(new window)

4.
F. A. Berezin, The relation between covariant and contravariant symbols of operators on classical complex symmetric spaces, Soviet Math. Dokl. 19 (1978), 786-789

5.
S. Bloom and G. S. De Souza, Atomic decomposition of generalized Lipschitz spaces, Illinois J. Math. 33 (1989), no. 2, 181-209

6.
S. Bloom and G. S. De Souza, Weighted Lipschitz spaces and their analytic characterizations, Constr. Approx, 10 (1994), no. 3, 339-376 crossref(new window)

7.
B. R. Choe, H. Koo, and H. Yi, Derivatives of Harmonic Bergman and Bloch functions on the ball, J. Math. Anal. Appl. 260 (2001), 100-123 crossref(new window)

8.
K. M. Dyakonov, Equivalent norms on Lipschitz-type spaces of holomorphic functions, Acta. Math. 178 (1997), 143-167 crossref(new window)

9.
K. M. Dyakonov, Holomorphic functions and quasiconformal mappings with smooth moduli, Adv. Math. 187 (2004), 146-172 crossref(new window)

10.
K. M. Dyakonov, Strong Hardy-Littlewood theorems for analytic functions and mappings of finite distortion, Math. Z. 249 (2005), no. 3, 597-611 crossref(new window)

11.
H. Hedenrnanlrn, B. Korenblum, and K. Zhu, Theory of Bergman spaces, Springer-Verlag, 2000

12.
M. Pavlovic, On Dyakonov's paper 'Equivalent norms on Lipschitz-type spaces of holomorphic functions', Acta. Math. 183 (1999), 141-143 crossref(new window)

13.
M. Pavlovic, Introduction to Function Spaces on the Disk, Posebna izdanja 20, Math-ematicki Institut SANU, Beograd 2004

14.
W. Rudin, Function theory in the unit ball of $\mathbb{C}^n$, Springer-Verlag Press, New York, 1980

15.
K. Zhu, VMO, ESV, and Toeplitz operators on the Bergman space, Trans. Amer. Math. Soc. 302 (1987), 617-646 crossref(new window)

16.
K. Zhu, Operator Theory in Function Spaces, Marcel Dekker, New York, 1990