JOURNAL BROWSE
Search
Advanced SearchSearch Tips
HYPONORMAL WEIGHTED SHIFT OPERATORS AND TRUNCATED COMPLEX MOMENT PROBLEMS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
HYPONORMAL WEIGHTED SHIFT OPERATORS AND TRUNCATED COMPLEX MOMENT PROBLEMS
Li, Chung-Ji;
  PDF(new window)
 Abstract
In this paper, we present some recent developments on hyponormal operator theory and truncated Curto-Fialkow and Embry complex moment problems.
 Keywords
k-hyponormal;subnormal;backward extension problem;truncated complex moment problem;
 Language
English
 Cited by
 References
1.
J. Conway, Subnormal operators, Pitman Publ. Co. London, 1981

2.
R. Curto, Quadratically hyponormal weighted shifts, Integral Equations Operator Theory 13 (1990), 49-66 crossref(new window)

3.
R. Curto and L. Fialkow, Recursively generated weighted shifts and the subnormal completion problem, Integral Equations Operator Theory 17 (1993), 202-246 crossref(new window)

4.
R. Curto and L. Fialkow, Recursively generated weighted shifts and the subnormal completion prob-lem, II, Integral Equations Operator Theory 18 (1994), 369-426 crossref(new window)

5.
R. Curto and L. Fialkow, Recursiveness, positivity, and truncated moment problems, Houston J. Math. 17 (1991), 603-635

6.
R. Curto and L. Fialkow, Solution of the truncated complex moment problems for fiat data, Mem. Amer. Math. Soc. 568(1996)

7.
R. Curto and L. Fialkow, The quadratic moment problem for the unit disk and unit circle, Integral Equations Operator Theory 38 (2000), 377-409 crossref(new window)

8.
R. Curto and L. Fialkow, Flat extensions of positive moment matrices: Recursively generated re-lations, Mem. Amer. Math. Soc. 648 (1998)

9.
R. Curto and L. Fialkow, Solution of the singular quartic moment problem, J. Operator Theory 48 (2002), 315-354

10.
I. Jung and C. Li, Backward extensions of hyponormal weighted shifts, Sci. Math. Jpn, 52 (2000), 267-278

11.
I. Jung and C. Li, A formula for k-hyponormality of backstep extension of a subnormal weighted shifts, Proc. American Math. Soc. 129 (2001), 2343-2351

12.
I. Jung, E. Ko, C. Li and S. Park, Embry truncated complex moment problem, Linear Algebra Appl. 375 (2003), 95-114 crossref(new window)

13.
I. Jung, S. Lee, W. Lee and C. Li, The quartic moment problem, submitted

14.
C. Li, Two variable subnormal completion problem, Hokkaido Math. J. 32 (2003), 21-29 crossref(new window)

15.
C. Li, A note on singular quartic moment problem, Bull. Korean Math. Soc. 37 (2000), 91-102

16.
C. Li, The singular Embry quartic moment problem, Hokkaido Math. J. 34 (2005), 655-666 crossref(new window)

17.
C. Li and M. Cho, The quadratic moment matrix E(1), Sci. Math. Jpn. 57 (2003), 559-567

18.
C. Li and S. Lee, The quartic moment problem, J. Korean Math. Soc. 42 (2005), No. 4, 723-747 crossref(new window)

19.
C. Li and X. Sun, Solution of Embry quartic moment problem on the unit circle, preprint

20.
J. Shohat and J. Tarmakin, The problem of moments, Math. Survey I, American Math. Soc., Providence, 1943

21.
J. Smul'jan, An operator a Hellinger integral (Russian), Mat. Sb. 91 (1959), 381-430

22.
J. Stampfli, Which weighted shifts are subnormal, Pacific J. Math. 17 (1966), 367-379 crossref(new window)