JOURNAL BROWSE
Search
Advanced SearchSearch Tips
WEIGHTED COMPOSITION OPERATORS BETWEEN BERGMAN-TYPE SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
WEIGHTED COMPOSITION OPERATORS BETWEEN BERGMAN-TYPE SPACES
Sharma, Ajay K.; Sharma, Som Datt;
  PDF(new window)
 Abstract
In this paper, we characterize the boundedness and compactness of weighted composition operators ${\psi}C_{\varphi}f
 Keywords
weighted Bergman spaces;growth spaces;weighted composition operator;composition operator;multiplication operator;
 Language
English
 Cited by
1.
On a product-type operator from Bloch spaces to weighted-type spaces on the unit ball, Applied Mathematics and Computation, 2011, 217, 12, 5930  crossref(new windwow)
2.
Composition operators from the space of Cauchy transforms to Bloch and the little Bloch-type spaces on the unit disk, Applied Mathematics and Computation, 2011, 217, 24, 10187  crossref(new windwow)
3.
Weighted Composition Operators from Weighted Bergman Spaces to Weighted-Type Spaces on the Upper Half-Plane, Abstract and Applied Analysis, 2011, 2011, 1  crossref(new windwow)
4.
Weighted composition operators between weighted Bergman spaces, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2009, 103, 1, 11  crossref(new windwow)
5.
Weighted Iterated Radial Composition Operators between Some Spaces of Holomorphic Functions on the Unit Ball, Abstract and Applied Analysis, 2010, 2010, 1  crossref(new windwow)
 References
1.
K. R. M. Attele, Multipliers of composition operators, Tokyo J. Math. 15 (1992), 185-198 crossref(new window)

2.
M. D. Contreras and A. G. Hernandcz-Diaz, Weighted composition operators on Hardy spaces, J. Math. Anal. Appl. 263 (2001), 224-233 crossref(new window)

3.
M. D. Contreras and A. G. Hernandcz-Diaz, Weighted composition operators on spaces of functions with derivatiae in a Hardy space, J. Operator Theory 52 (2004), 173-184

4.
C. C. Cowen and B. D. MacCluer, Composition operators on spaces of analytic functions, CRC Press Boca Raton, New York, 1995

5.
Z. Cuckovic and R. Zhao, Weighted composition operators on the Bergman space, J. London Math. Soc. 70 (2004), 499-51l crossref(new window)

6.
F. Forelli, The isometries of $H^P$ spaces, Canad. J Math. 16 (1964), 721-728 crossref(new window)

7.
H. Hedenmalm, B. Korenblum and K. Zhu, Theory of Bergman spaces, Springer, New York, Berlin, etc. 2000

8.
K. Hoffman, Banach spaces of analytic functions, Dover Publications, Inc., 1988

9.
H. Kamowitz, Compact operators of the form $uC_{\varphi}$, Pacific J. Math. 80 (1979), 205-211 crossref(new window)

10.
J. E. Littlewood, On inequalities in the theory of functions, Proc. London Math. Soc. 23 (1925)

11.
B. D. MacCluer and J. H. Shapiro, Angular derivatives and compact composition operators on Hardy and Bergman spaces, Can. J. Math. 38 (1986), 878-906 crossref(new window)

12.
V. Matache, Compact composition operators on Hardy spaces of a half-plane, Proc. Amer. Math. Soc. 127 (1999), 1483-1491

13.
G. Mirzakarimi and K. Seddighi, Weighted composition operators on Bergman and Dirichlet spaces, Georgian. Math. J. 4 (1997), 373-383 crossref(new window)

14.
H. J. Schwartz, Composition operators on $H^p$, Thesis, University of Toledo, 1969

15.
J. H. Shapiro and P. D. Taylor, Compact, nuclear and Hilbert-Schmidt composition operators on $H^2$, Indiana Univ. Math J. 23 (1973), 471-496 crossref(new window)

16.
J. H. Shapiro, The essential norm of a composition operator, Ann. Math. 125 (1987), 375-404 crossref(new window)

17.
J. H. Shapiro, Composition operators and classical function theory, Springer-Verlag, New York. 1993

18.
J. H. Shapiro and W. Smith, Hardy spaces that support no compact composition operators, J. Funct. Anal. (to appear)

19.
R. K. Singh and S. D. Sharma, Composition operators on a functional Hilbert space, Bull. Austral. Math. Soc. 20 (1979), 277-284

20.
W. Smith, Composition operators between Bergman and Hardy spaces, Trans. Amer. Math. Soc. 348 (1996), 2331-2348 crossref(new window)

21.
S. Ohno, K. Stroethoff, and R. Zhao, Weighted composition operators between Bloch-type spaces, Rocky Mountain J. Math. 33 (2003), 191-215 crossref(new window)

22.
S. Ohno and H. Takagi, Some properties of weighted composition operators on algebras of analytic functions, J. Nonlinear Convex Anal. 2 (2001), 369-380

23.
S. Ohno and R. Zhao, Weighted composition operators on the Bloch spaces, Bull. Austral. Math. Soc. 63 (2001), 177-185 crossref(new window)

24.
K. Zhu, Operator theory in function spaces, Marcel Dekker, New York, 1990