JOURNAL BROWSE
Search
Advanced SearchSearch Tips
RELATIONS IN THE TAUTOLOGICAL RING BY LOCALIZATION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
RELATIONS IN THE TAUTOLOGICAL RING BY LOCALIZATION
Sato, Fumitoshi;
  PDF(new window)
 Abstract
We give a way to obtain formulas for in terms and where ${\pi}
 Keywords
Gromov-Witten invariant;localization theorem;
 Language
English
 Cited by
 References
1.
M. Atiyah, and R. Bott, The moment map and equivariant cohomology, Topology 23 (1984), 1-28 crossref(new window)

2.
K. Behrend and B. Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997), no. 1, 45-88 crossref(new window)

3.
A. Bertram and H. Kley, New recursions for genus-zero Gromov- Witten invariants, arXiv:math.AG/0007082

4.
A. Bertram, Another Way to enumerate rational curves with Torus Actions, to appear in Invent. Math

5.
A. Bertram, Using symmetry to count rational curves, Contemporary Math. vol. 312 (2002), 87-99 crossref(new window)

6.
D. Edidin and W. Graham, Localization in equivariant intersection theory and the Bott residue formula, Amer. J. Math. 120 (1998), no. 3, pp. 619-636 crossref(new window)

7.
C. Faber, A conjectural description of the tautological ring of the moduli space of curves, Moduli of Curves and Abelian Varieties, Aspects Math., E33, pp. 109-129

8.
W. Fulton and R. Pandharipande, Notes on stable maps and quantum cohomology, Algebraic Geometry-Santa Cruz 1995, Proc. Sympos. Pure Math., 62, Part 2, pp. 45-96

9.
E. Getzler, Topological recursion relations in genus 2, Integrable Systems and Algebraic Geometry (Kobe/kyoto, 1997), pp. 73-106

10.
A. Givental, Equivariant Gromou-Witten invariants, Internet. Math. Res. Notices. 1996 (1996), no. 13, 613-663 crossref(new window)

11.
T. Graber and R. Vakil, On the tautological ring of $\overline{M}_{g,n}$, Turkish J. Math. 25 (2001), no. 1, 237-243

12.
T. Graber and R. Pandharipande, Localization of uirtual classes, Invent. Math 135 (1999), no. 2, 487-518 crossref(new window)

13.
K. Hori, Constraints for topological strings in D $\geq$ 1, Nucl.Phys. B439 (1995), 395-423

14.
E. Katz, Topological recursion relations by localization, arXiv:math.AG/0310050

15.
J. Kock, Notes on Psi Classes, unpublished

16.
M. Kontsevich, Enumeration of rational curves via torus actions. In R. Dijkgraaf, C. Faber, and G. van der Geer, editors, The moduli space of curves, vol. 129 of Progress in Mathematics, pp.335-368

17.
D. Mumford, Towards an enumerative geometry of the moduli space of curves, Arithmetic and Geometry, 1983, vol. II, pp.272-327