JOURNAL BROWSE
Search
Advanced SearchSearch Tips
VARIOUS INVERSE SHADOWING IN LINEAR DYNAMICAL SYSTEMS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
VARIOUS INVERSE SHADOWING IN LINEAR DYNAMICAL SYSTEMS
Choi, Tae-Young; Lee, Keon-Hee;
  PDF(new window)
 Abstract
In this paper, we give a characterization of hyperbolic linear dynamical systems via the notions of various inverse shadowing. More precisely it is proved that for a linear dynamical system f(x)=Ax of , f has the inverse( inverse or inverse) shadowing property if and only if the matrix A is hyperbolic.
 Keywords
inverse shadowing;weak inverse shadowing;orbital inverse shadowing;hyperbolicity;
 Language
English
 Cited by
 References
1.
T. Choi, S. Kim and K. Lee, Weak inverse shadowing and genericity, Bull. Korean Math. Soc. 43 (2006), 43-52 crossref(new window)

2.
R. Corless and S. Pilyugin, Approximate and real trajectories for generic dynamical systems, J. Math. Anal. Appl. 189 (1995), 409-423 crossref(new window)

3.
P. Diamond, K. Lee and Y. Han, Bishadowing and hyperbolicity, International Journal of Bifurcations and Chaos 12 (2002), 1779-1788 crossref(new window)

4.
P. Kloeden and J. Ombach, Hyperbolic homeomorphisms and bishadowing, Ann. Pol. Math 45, (1997), 171-177

5.
P. Kloeden, J. Ombach and A. Porkrovskii, Continuous and inverse shadowing, Funct. Diff. Equ. 6 (1999), 137-153

6.
K. Lee, Continuous inverse shadowing and hyperbolicity, Bull. Austral. Math. Soc. 67 (2003), 15-26 crossref(new window)

7.
K. Lee and J. Park, Inverse shadowing of circle maps, Bull. Austral. Math. Soc. 69 (2004), 353-359 crossref(new window)

8.
J. Lewowicz, Persistence in expansive systems, Ergodic Theory Dynam. Systems 3 (1983), 567-578

9.
S. Pilyugin, Shadowing in dynamical systems, Lecture Notes in Math. 1706, Springer-Verlag, Berlin, 1999, 182-185

10.
S. Pilyugin, Inverse shadowing by continuous methods, Discrete and Continuous Dynamical Systems 8 (2002), 29-38 crossref(new window)

11.
S. Pilyugin, A. Rodionova and K. Sakai, Orbital and weak shadowing properties, Discrete and Continuous Dynamical Systems 9 (2003), 287-308 crossref(new window)

12.
O. B. Plamenevskaya, Weak shadowing for two-dimensional diffeomorphisms, Vestnik St. Petersburg Univ. Math. 31 (1998), 49-56