JOURNAL BROWSE
Search
Advanced SearchSearch Tips
INTUITIONISTIC FUZZY SUBSEMIGROUPS AND SUBGROUPS ASSOCIATED BY INTUITIONISTIC FUZZY GRAPHS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
INTUITIONISTIC FUZZY SUBSEMIGROUPS AND SUBGROUPS ASSOCIATED BY INTUITIONISTIC FUZZY GRAPHS
Jun, Young-Bae;
  PDF(new window)
 Abstract
The notion of intuitionistic fuzzy graphs is introduced. We show how to associate an intuitionistic fuzzy sub(semi)group with an intuitionistic fuzzy graph in a natural way.
 Keywords
intuitionistic fuzzy subsemigroup;intuitionistic fuzzy subgroup;intuitionistic fuzzy graph;intuitionistic (auto)morphism;
 Language
English
 Cited by
1.
Vague graphs with application, Journal of Intelligent & Fuzzy Systems, 2016, 30, 6, 3291  crossref(new windwow)
2.
Degree and total degree of edges in bipolar fuzzy graphs with application, Journal of Intelligent & Fuzzy Systems, 2016, 30, 6, 3271  crossref(new windwow)
3.
Isomorphic properties of neighborly irregular vague graphs, Journal of Intelligent & Fuzzy Systems, 2016, 30, 6, 3261  crossref(new windwow)
4.
Connections between interval valued fuzzy graphs and fuzzy groups with (S,T)-norms, Journal of Discrete Mathematical Sciences and Cryptography, 2009, 12, 5, 521  crossref(new windwow)
5.
Some properties of vague graphs with application, Journal of Intelligent & Fuzzy Systems, 2016, 30, 6, 3423  crossref(new windwow)
 References
1.
K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986), 87-96 crossref(new window)

2.
K. T. Atanassov, New operations defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems 61 (1994), 137-142 crossref(new window)

3.
K. T. Atanassov, Intuitionistic fuzzy sets. Theory and applications, Studies in Fuzziness and Soft Computing, 35. Heidelberg; Physica-Verlag 1999

4.
K. R. Bhutani and A. Rosenfeld, Strong arcs in fuzzy graphs, Inform. Sci. 152 (2003), 319-32 crossref(new window)

5.
K. R. Bhutani and A. Rosenfeld, Fuzzy end nodes in fuzzy graphs, Inform. Sci. 152 (2003), 323-326 crossref(new window)

6.
M. Blue, B. Bush and J. Puckett, Unified approach to fuzzy graph problems, Fuzzy Sets and Systems 125 (2002), 355-368 crossref(new window)

7.
P. Burillo and H. Bustince, Vague sets are intuitionistic fuzzy sets, Fuzzy Sets and Systems 79 (1996), 403-405 crossref(new window)

8.
H. Bustince and P. Burillo, Structures on intuitionistic fuzzy relations, Fuzzy Sets and Systems 78 (1996), 293-303 crossref(new window)

9.
S. K. De, R. Biswas and A. R. Roy, An application of intuitionistic fuzzy sets in medical diagnosis, Fuzzy Sets and Systems 117 (2001), 209-213 crossref(new window)

10.
L. Dengfeng and C. Chuntian, New similarity measures of intuitionistic fuzzy sets and application to pattern recognitions, Pattern Recognition Letters 23 (2002), 221-225 crossref(new window)

11.
W. L. Gau and D. J. Buehrer, Vague sets, IEEE Trans. Systems Man Cybernet 23 (1993), 610-614 crossref(new window)

12.
K. H. Kim and Y. B. Jun, Intuitionistic fuzzy ideals of semigroups, Indian J. Pure Appl. Math. 33 (2002), no. 4, 443-449

13.
J. N. Mordeson, Fuzzy line graphs, Pattern Recognition Letters 14 (1993), 381-384 crossref(new window)

14.
J. N. Mordeson and P. S. Nair, Cycles and cocyles of fuzzy graphs, Inform. Sci. 90 (1996), 39-49 crossref(new window)

15.
J. N. Mordeson and P. S. Nair, Successor and source of (fuzzy) finite state machines and (fuzzy) directed graphs, Inform. Sci. 95 (1996), 113-124 crossref(new window)

16.
J. N. Mordeson and C. S. Peng, Operations on fuzzy graphs, Inform. Sci. 79 (1994), 159-170 crossref(new window)

17.
A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971), 512-517 crossref(new window)

18.
E. Szmidt and J. Kacprzyk, Entropy for intuitionistic fuzzy sets, Fuzzy Sets and Systems 118 (2001), 467-477 crossref(new window)

19.
L. A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338-353 crossref(new window)