JOURNAL BROWSE
Search
Advanced SearchSearch Tips
선형보존자 문제들에 관한 연구
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
선형보존자 문제들에 관한 연구
Song, Seok-Jun;
  PDF(new window)
 Keywords
선형연산자;선형보존자;
 Language
Korean
 Cited by
1.
Extreme Preservers of Zero-term Rank Sum over Fuzzy Matrices,;;

Kyungpook mathematical journal, 2010. vol.50. 4, pp.465-472 crossref(new window)
2.
EXTREME PRESERVERS OF FUZZY MATRIX PAIRS DERIVED FROM ZERO-TERM RANK INEQUALITIES,;;

호남수학학술지, 2011. vol.33. 3, pp.301-310 crossref(new window)
1.
Extreme Preservers of Zero-term Rank Sum over Fuzzy Matrices, Kyungpook mathematical journal, 2010, 50, 4, 465  crossref(new windwow)
2.
EXTREME PRESERVERS OF FUZZY MATRIX PAIRS DERIVED FROM ZERO-TERM RANK INEQUALITIES, Honam Mathematical Journal, 2011, 33, 3, 301  crossref(new windwow)
 References
1.
R. B. Bapat, S. Pati and S. Z. Song, Rank preservers of matrices over max algebra, Linear and Multilinear algebra 48 (2000), 149-164 crossref(new window)

2.
L. Beasley, Linear transformations on matrices: The invariance of commuting pairs of matrices, Linear and Multilinear Algebra 6 (1978), 179-183 crossref(new window)

3.
L. Beasley, Rank k-preservers and preservers of sets of ranks, Linear Algebra Appl. 55 (1983), 11-17 crossref(new window)

4.
L. Beasley, Linear operators on matrices: The invariance of rank-k matrices, Linear Algebra Appl. 107 (1988), 161-167 crossref(new window)

5.
L. Beasley, A. Guterman, S. G. Lee, and S. Z. Song, Linear transformations preserving the Grassmannian over Mn($Z_+$), Linear Algebra and Its Applications, 393 (2004), 39-46 crossref(new window)

6.
L. Beasley, A. Guterman, S. G. Lee, and S. Z. Song, Linear preservers of zeros of matrix polynomials, Linear Algebra and Its Applications 401 (2005), 325-340 crossref(new window)

7.
L. Beasley, A. Guterman, S. G. Lee, and S. Z. Song, Linear preservers of extremes of rank inequalities over semirings: Row and column ranks, Linear Algebra and Its Applications 413 (2006), 495-509 crossref(new window)

8.
L. Beasley, S. G. Lee, and S. Z. Song, Linear operators that preserve pairs of matrices which satisfy extreme rank properties, Linear Algebra and Its Applications 350 (2002), 263-271 crossref(new window)

9.
L. Beasley and N. Pullman, Nonnegative rank preserving operators, Linear Algebra Appl. 65 (1985), 207-223 crossref(new window)

10.
L. Beasley and N. Pullman, Boolean-rank-preserving operators and Boolean-rank-1 spaces, Linear Algebra Appl. 59 (1984), 55-77 crossref(new window)

11.
L. Beasley and N. Pullman, Fuzzy rank-preserving operators, Linear Algebra Appl. 73 (1986), 197-211 crossref(new window)

12.
L. Beasley and N. Pullman, Term-rank, permanent and rook polynomial preservers, Linear Algebra Appl. 90 (1987), 33-46 crossref(new window)

13.
L. Beasley and N. Pullman, Semiring rank versus column rank, Linear Algebra Appl. 101 (1988), 33-48 crossref(new window)

14.
L. Beasley and N. Pullman, Linear operators strongly preserving primitivity, Linear and Multilinear Algebra 25 (1989), 205-213 crossref(new window)

15.
L. Beasley and N. Pullman, Linear operators preserving digraphs whose maximum cycle length is small, Linear and Multilinear Algebra 28 (1990), 111-117 crossref(new window)

16.
L. Beasley and N. Pullman, Linear operators preserving properties of graphs, Congruss Numerantium 70 (1990), 105-112

17.
L. Beasley and N. Pullman, Linear operators strongly preserving commuting pairs of Boolean matrices, Linear Algebra Appl. 132 (1990), 137-143 crossref(new window)

18.
L. Beasley and N. Pullman, Linear operators preserving idempotent matrices over fields, Linear Algebra Appl, 146 (1991), 7-20 crossref(new window)

19.
L. Beasley and N. Pullman, Linear operators strongly preserving idempotent matrices over semirings, Linear Algebra Appl. 160 (1992), 217-229 crossref(new window)

20.
L. Beasley and N. Pullman, Linear operators that strongly preserve graphical properties of matrices, Discrete Math. 104 (1992), 143-157 crossref(new window)

21.
L. Beasley and S. G. Lee, Linear operators preserving r-potent matrices over semirings, Linear Algebra Appl. 164 (1992), 589-600 crossref(new window)

22.
L. B. Beasley and S. Z. Song, A comparison of nonnegative real ranks and their preservers, Linear and Multilinear Algebra 31 (1992), 37-46 crossref(new window)

23.
L. B. Beasley and S. Z. Song, Linear operators that preserve zero-term rank over fields and rings, Linear Algebra and Its Applications 341 (2002), 143-149 crossref(new window)

24.
L. Beasley, S. Z. Song, K. T. Kang, and B. Sarma, Column ranks and their preservers over nonnegative real matrices, Linear Algebra and Its Applications 399 (2005), 3-16 crossref(new window)

25.
L. B. Beasley, S. Z. Song and S. G. Lee, Linear operators that preserve zero-term rank of Boolean matrices, J. Korean Math. Soc. 36 (1999), no. 6, 1181-1190

26.
L. B. Beasley, S. Z. Song and S. G. Lee, Zero-term rank preservers, Linear and Multilinear Algebra 48 (2001), no. 4, 313-318 crossref(new window)

27.
A. Berman, D. Hershkowitz, and C. R. Johnson, Linear transformations that preserve certain positivity classes of matrices, Linear Algebra Appl. 68 (1985), 9-29 crossref(new window)

28.
E. P. Botta, Linear maps that preserve singular and nonsingular matrices, Linear Algebra Appl. 20 (1978), 45-49 crossref(new window)

29.
E. P. Botta, Linear transformations preserving the unitary group, Linear and Multilinear Algebra 8 (1979), 89-96 crossref(new window)

30.
E. P. Botta and S. Pierce, The preservers of any orthogonal group, Pacific J. Math. 70 (1977), 347-359 crossref(new window)

31.
G. H. Chan and M. H. Lim, Linear transformations on symmetric matrices that preserve commutativity, Linear Algebra Appl. 47 (1982), 11-22 crossref(new window)

32.
G. H. Chan and M. H. Lim, Linear transformations on tensor spaces, Linear and Multilinear Algebra 14 (1983), 3-9 crossref(new window)

33.
G. H. Chan, M. H. Lim, and K. K. Tan, Linear preservers on powers of matrices, Linear Algebra Appl., 162 (1992), 615-626 crossref(new window)

34.
G. H. Chan, M. H. Lim, and K. K. Tan, Linear preservers on matrices, Linear Algebra Appl. 93 (1987), 67-80 crossref(new window)

35.
M. D. Choi, A. A. Jafarian, and H. Radjavi, Linear maps preserving commutativity, Linear Algebra Appl. 87 (1987), 227-241 crossref(new window)

36.
J. Dieudonne, The Automorphisms of the Classical Groups, Mem. Amer. Math. Soc. 2 (1949)

37.
D. Z. Djokovic, Linear transformations of tensor products preserving a fixed rank, Pacific J. Math., 30 (1969), 411-414 crossref(new window)

38.
G. Frobenius, Uber die Darstellung der endlichen Gruppen durch lineare Substitutionen, Sitzungsber. Deutsch. Akad. Wiss. Berlin, (1897), pp. 994-1015

39.
R. Grone, Isometries of Matrix Algebras, Ph. D. Thesis, Univ. of California, Santa Barbara, (1976)

40.
R. Grone and M. Marcus, Isometries of matrix algebra, J. Algebra 47 (1977), 180-189 crossref(new window)

41.
D. Hershkowitz and C. R. Johnson, Linear transformations which map the Pmatrices into themselves, Linear Algebra Appl. 74 (1986), 23-38 crossref(new window)

42.
F. Hiai, Similarity preserving linear maps on matrices, Linear Algebra Appl. 97 (1987), 127-139 crossref(new window)

43.
R. Horn, C. K. Li, and N. K. Tsing, Linear operators preserving certain equivalence relations on matrices, SIAM J. Matrix Anal. Appl. 12 (1991), 195-204 crossref(new window)

44.
S. G. Hwang, S. J. Kim and S. Z. Song, Linear operators that preserve maximal column rank of Boolean matrices, Linear Multilinear Algebra 36 (1994), no. 4, 305-313 crossref(new window)

45.
C. R. Johnson and S. Pierce, Linear maps on hermitian matrices: The stabilizer of an inertia class II, Linear and Multilinear Algebra 19 (1986), 21-31 crossref(new window)

46.
S. Kantor, Theorie der Aquivalenz von linearen $\infty$ Scharen bilinearer Formen, Sitzungsber. Munchener Akad., (1987), pp. 367-381

47.
S. Kirkland and N. J. Pullman, Linear operators preserving invariants of nonbinary matrices, Linear and Multilinear Algebra 33 (1992), 295-300 crossref(new window)

48.
A. Kovacs, Trace preserving linear transformations on matrix algebras, Linear and Multilinear Algebra 4 (1976/77), 243-250 crossref(new window)

49.
C. K. Li, Linear operators preserving the numerical radius of matrices, Proc. Amer. Math. Soc. 99 (1987), 601-608

50.
C. K. Li, L. Rodman, and N. K. Tsing, Linear operators preserving certain equivalence relations originating in system theory, Linear Algebra Appl. 161 (1992), 165-226 crossref(new window)

51.
C. K. Li, B. S. Tam, and N. K. Tsing, Linear operators preserving the (p,q) numerical range, Linear Algebra Appl. 110 (1988), 75-89 crossref(new window)

52.
C. K. Li and N. K. Tsing, Duality between some linear preserver problems: The invariance of the c-numerical range, the c-numerical radius and certain matrix sets, Linear and Multilinear Algebra 23 (1988), 353-362 crossref(new window)

53.
C. K. Li and N. K. Tsing, Duality between some linear preserver problems.II. Isometries with re-spect to c-spectral norms and matrices with fixed singular values, Linear Algebra Appl. 110 (1988), 181-212

54.
C. K. Li and N. K. Tsing, Linear operators preserving unitarily invariant norms on matrices, Linear and Multilinear Algebra 26 (1990), 119-132 crossref(new window)

55.
C. K. Li and N. K. Tsing, Linear operators preserving certain functions on singular values of ma-trices, Linear and Multilinear Algebra 26 (1990), 133-143 crossref(new window)

56.
C. K. Li and N. K. Tsing, Linear operators preserving unitary similarity invariant norms on ma-trices, Linear and Multilinear Algebra 27 (1990), 213-224 crossref(new window)

57.
C. K. Li and N. K. Tsing, Duality between some linear preserver problems. III. c-spectral norms on (skew)-symmetric matrices and matrixes with fixed singular values, Linear Algebra Appl. 143 (1991), 67-97

58.
C. K. Li and N. K. Tsing, Linear operators leaving a class of matrices with fixed singular values invariant, Linear and Multilinear Algebra, 34 (1993), 41-49 crossref(new window)

59.
R. Loewy, Linear maps which preserve an inertia class, SIAM J. Matrix Anal. Appl. 11 (1990), 107-112 crossref(new window)

60.
R. Loewy and S. Pierce, Linear preservers of balanced singular inertia classes, Linear Algebra and its Applications, 201 (1994), 61-77 crossref(new window)

61.
M. Marcus, Linear operators leaving the unitary group invariant, Duke Math. J. 26 (1959), 155-163 crossref(new window)

62.
M. Marcus, Linear operations on matrices, Amer. Math. Monthly 69 (1962), 837-847 crossref(new window)

63.
M. Marcus, Linear transformations on matrices, J. Res. Nat. Bur. Standards 75B (1971), 107-113

64.
M. Marcus and H. Mine, On the relation between the permanent and the determinant, Illinois J. Math. 5 (1962), 327-332

65.
M. Marcus and B. Moyls, Transformations on tensor product spaces, Pacific J. Math. 9 (1959), 1215-1221 crossref(new window)

66.
S. Pierce, Linear maps on algebraic groups, Linear Algebra Appl. 162 (1992), 237-242 crossref(new window)

67.
S. Pierce and W. Watkins, Invariants of linear maps on matrix algebras, Linear and Multilinear Algebra 6 (1989/79), 185-200

68.
S. Pierce et al., A survey of linear preserver problems, Linear and Multilinear Algebra 33 (1992), 1-119 crossref(new window)

69.
G. Polya, Aufgabe 424, Arch. Math. u. phys. 203 (1913), 271

70.
H. Radjavi, Commutativity-preserving operators on symmetric matrices, Linear Algebra Appl. 61 (1984), 219-224 crossref(new window)

71.
R. Sinkhorn, Linear adjugate preservers on complex matrices, Linear and Multilinear Algebra 12 (1982/83), 215-222 crossref(new window)

72.
S. Z. Song, Linear operators that preserve column rank of Boolean matrices, Proc. Amer. Math. Soc. 119(4) (1993), 1085-1088

73.
S. Z. Song, Linear operators that preserve column rank of fuzzy matrices, Fuzzy Sets and Systems 62 (1994), 311-317 crossref(new window)

74.
S. Z. Song, On spanning column rank of matrices over semirings, Bull. Korean Math. Soc. 32 (1995), 337-342

75.
S. Z. Song, A comparison of maximal column ranks of matrices over related semirings, J. Korean Math. Soc. 34 (1997), no. 1, 213-225

76.
S. Z. Song, Linear operators that preserve maximal column ranks of nonnegative integer matrices, Proc. Amer. Math. Soc. 126 (1998), 2205-2211

77.
S. Z. Song, L. Beasley, G. S. Cheon and Y. B. Jun, Rank and perimeter preserver of Boolean rank-1 matrices, J. Korean Math. Soc. 41 (2004), no. 2, 397-406 crossref(new window)

78.
S. Z. Song and S. G. Hwang, Spanning column ranks and their preservers of nonnegative matrices, Linear Algebra and Its Applications 254 (1997), 485-495 crossref(new window)

79.
S. Z. Song and K. T. Kang, Column ranks and their preservers of matrices over max algebra, Linear and Multilinear Algebra 51 (2003), no. 3, 311-318 crossref(new window)

80.
S. Z. Song and K. T. Kang, Linear maps that preserve commuting pairs of matrices over general Boolean algebra, J. Korean Math. Soc. 43 (2006), no. 1, 77-86

81.
S. Z. Song, K. T. Kang and Y. B. Jun, Linear preservers of Boolean nilpotent matrices, J. Korean Math. Soc. 43 (2006), no. 3, 539-552 crossref(new window)

82.
S. Song and S. Lee, Column ranks and their preservers of general Boolean matrices, J. Korean Math. Soc. 32 (1995), 531-540

83.
S. Z. Song and S. R. Park, Maximal column rank preservers of fuzzy matrices, Discussiones Mathematicae - General Algebra and Applications 21 (2001), no. 2, 207-218 crossref(new window)

84.
S. Z. Song, S. D. Yang, S. M. Hong, Y. B. Jun and S. J. Kim, Linear operators preserving maximal column ranks of nonbinary Boolean matrices, Discussiones Mathematicae-General Algebra and Applications 20 (2000), no. 2, 255-265 crossref(new window)

85.
W. Watkins, Linear maps that preserve commuting pairs of matrices, Linear Algebra Appl. 14 (1976), 29-35 crossref(new window)