JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON BOUNDEDNESS FOR COMPLEX VALUED FUNCTIONS ON THE p-ADIC VECTOR SPACE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON BOUNDEDNESS FOR COMPLEX VALUED FUNCTIONS ON THE p-ADIC VECTOR SPACE
Kim, Min-Soo; Son, Jin-Woo;
  PDF(new window)
 Abstract
In this paper, we prove sufficient conditions of boundedness of maximal operators on the p-adic vector space. We also consider weighted Hardy-Littlewood averages on the p-adic vector space.
 Keywords
Hardy-Littlewood averages;p-adic numbers;
 Language
English
 Cited by
 References
1.
W. Chong, M.-S. Kim, T. Kim, and J.-W. Son, On the p-adic spectral analysis and multiwavelet on $L^2(Q^n_p)$, Int. J. Math. Math. Sci. 2003 (2003), 2619-2633 crossref(new window)

2.
F. Q. Gouvea, p-adic Numbers: An Introduction, Universitext, Springer-Verlag, Berlin, 1993

3.
J. Igusa, An introduction to the theory of local zeta functions, AMS/IP Studies in Advanced Mathematics, 14, American Mathematical Society and International Press, 1994

4.
E.-C. Jang, M.-S. Kim, J.-W. Son, T. Kim, and S.-H. Rim, On p-adic bounded functions II, J. Math. Anal. Appl. 264 (2001), 21-31 crossref(new window)

5.
J.-W. Son and K. S. Rim, Green functions on the p-adic vector space, Commun. Korean Math. Soc. 20 (2005), 657-669 crossref(new window)

6.
M. H. Taibleson, Fourier analysis on local fields, Princeton University Press, Princeton, N.J., 1975

7.
V. S. Vladimirov, Tables of integrals of complex valued functions of p-adic arguments, Matematicheskij Institut Im. V. A. Steklova, Moscow, 2003

8.
V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, p-Adic Analysis and Mathematical Physics, Series on Soviet and East European Mathematics, Vol. 1, World Scientific, Singapore, 1994

9.
J. Xiao, $L^p$ and BMO bounds of weighted Hardy-Littlewood averages, J. Math. Anal. Appl. 262 (2001), 660-666 crossref(new window)