JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ROUGHNESS IN SUBTRACTION ALGEBRAS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ROUGHNESS IN SUBTRACTION ALGEBRAS
Ahn, Sun-Shin; Jun, Young-Bae; Lee, Kyoung-Ja;
  PDF(new window)
 Abstract
As a generalization of ideals in subtraction algebras, the notion of rough ideals is discussed.
 Keywords
lower/upper approximation;definable subset;lower/upper rough subalgebra/ideal;
 Language
English
 Cited by
1.
SOME TOPOLOGICAL PROPERTIES IN SUBTRACTION ALGEBRAS,;;;

호남수학학술지, 2008. vol.30. 2, pp.247-258 crossref(new window)
2.
ROUGH FUZZY QUICK IDEALS IN d-ALGEBRAS,;;

대한수학회논문집, 2010. vol.25. 4, pp.511-522 crossref(new window)
1.
SOME TOPOLOGICAL PROPERTIES IN SUBTRACTION ALGEBRAS, Honam Mathematical Journal, 2008, 30, 2, 247  crossref(new windwow)
 References
1.
J. C. Abbott, Sets, Lattices and Boolean Algebras, Allyn and Bacon, Boston 1969

2.
G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloq. Publ., Vol. 25, second edition 1984; third edition, 1967, Providence

3.
Y. B. Jun and H. S. Kim, On ideals in subtraction algebras, Sci. Math. Jpn. (submitted)

4.
Y. B. Jun, H. S. Kim, and E. H. Roh, Ideal theory of subtraction algebras, Sci. Math. Jpn. Online e-2004 (2004), 397-402

5.
Y. B. Jun and K. H. Kim, Prime and irreducible ideals in subtraction algebras, Ital. J. Pure Appl. Math. (submitted)

6.
N. Kuroki, Rough ideals in semigroups, Inform. Sci. 100 (1997), 139-163 crossref(new window)

7.
N. Kuroki and J. N. Mordeson, Structure of rough sets and rough groups, J. Fuzzy Math. 5 (1997), no. 1, 183-19l

8.
Z. Pawlak, Rough sets, Int. J. Inform. Compo Sci. 11 (1982), 341-356 crossref(new window)

9.
Z. Pawlak, Rough Sets-Theorical Aspects of Reasoning about Data, Kluwer Academic, Norwell, MA, 1991

10.
B. M. Schein, Difference Semigroups, Comm. Algebra 20 (1992), 2153-2169 crossref(new window)

11.
B. Zelinka, Subtraction Semigroups, Math. Bohemica 120 (1995), 445-447