JOURNAL BROWSE
Search
Advanced SearchSearch Tips
GENERALIZED NONLINEAR MULTIVALUED MIXED QUASI-VARIATIONAL-LIKE INEQUALITIES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
GENERALIZED NONLINEAR MULTIVALUED MIXED QUASI-VARIATIONAL-LIKE INEQUALITIES
Lee, Byung-Soo; Khan M. Firdosh; Salahuddin Salahuddin;
  PDF(new window)
 Abstract
In this paper, we introduce a new class of generalized nonlinear multivalued mixed quasi-variational-like inequalities and prove the existence and uniqueness of solutions for the class of generalized nonlinear multivalued mixed quasi-variational-like inequalities in reflexive Banach spaces using Fan-KKM Theorem.
 Keywords
nonlinear multivalued mixed quasi-variational-like inequalities;monotone type mappings;generalized Lipschitz type mapping;KKM-mapping;
 Language
English
 Cited by
 References
1.
J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis, John Wiley & Sons, Inc., New York, 1984

2.
F. E. Browder, On the unification of the calculus of variations and the theory of monotone nonlinear operators in Banach spaces, Proc. Nat. Acad. Sci. U.S.A 56 (1966), 419-425

3.
F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert spaces, J. Math. Anal. Appl. 20 (1967), 197-228 crossref(new window)

4.
Y. J. Cho, Y. P. Fang, N. J. Huang, and K. H. Kim, Generalized set valued strongly nonlinear variational inequalities in Banach spaces, J. Korean Math. Soc. 40 (2003), no. 2, 195-205

5.
K. Fan, Some properties of convex sets related to fixed points theorem, Math. Annal. 266 (1984), 519-537 crossref(new window)

6.
Y. P. Fang, Y. J. Cho, N. J. Huang, and S. M. Kang, Generalized nonlinear quasivariational-like inequalities for set valued mappings in Banach spaces, Math. Inequal. Appl. 6 (2003), no. 2, 331-337

7.
F. Giannessi and A. Maugeri, Variational Inequalities and Network Equilibrium Problems, Pleum, New York, 1995

8.
P. T. Harker and J. S. Pang, Finite dimensional variational inequality and nonlinear complementarity problems; A survey of theory, algorithms and applications, Math. Program. 48 (1990), 161-220 crossref(new window)

9.
N. J. Huang and C. X. Deng, Auxiliary principle and iterative algorithms for generalized set-valued strongly nonlinear mixed variational-like inequalities, J. Math. Anal. Appl. 256 (2001), 345-359 crossref(new window)

10.
N. J. Huang, Y. P. Fang, and Y.J. Cho, A new class of generalized nonlinear mixed quasi-variational inequalities in Banach spaces, Math. Inequal. Appl. 6 (2003), no. 1, 125-132

11.
N. J. Huang, Y. P. Liu, Y. Y. Tang, and M. R. Bai, On the generalized setvalued strongly nonlinear implicit variational inequalities, Comput. Math. Appl. 37 (1999), no. 10, 29-36 crossref(new window)

12.
P. D. Panagiotopoulos, Inequality Problems in Mechanics and Applications, Birkhauser, Boston, 1995

13.
J. Parida and A. Sen, A variational-like inequality for multifunctions with applications, J. Math. Anal. Appl. 124 (1987), 73-81 crossref(new window)

14.
R. U. Verma, Nonlinear variational inequalities on convex subsets of Banach spaces, Appl. Math. Lett. 10 (1997), no. 4, 25-27

15.
R. U. Verma, Generalized pseudo-contractions and nonlinear variational inequalities, Publ. Math. Debrecen 53 (1998), no. 1-2, 23-28

16.
R. U. Verma, On monotone nonlinear variational inequality problems, Comment Math. Univ. Carolinae 39 (1998), no. 1, 91-98

17.
G. X. Z. Yuan, KKM Theory and Applications, Marcel Dekker, New York, 1999

18.
E. Zeidler, Nonlinear Functional Analysis and its Applications, Springer-Verlag, New York, 1988