JOURNAL BROWSE
Search
Advanced SearchSearch Tips
RIBAUCOUR TRANSFORMATIONS ON RIEMANNIAN SPACE FORMS IN LORENTZIAN SPACE FORM
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
RIBAUCOUR TRANSFORMATIONS ON RIEMANNIAN SPACE FORMS IN LORENTZIAN SPACE FORM
Park, Joon-Sang;
  PDF(new window)
 Abstract
We study Ribaucour transformations on nondegenerate local isometric immersions of Riemannian space forms into Lorentzian space forms with flat normal bundles. They can be explained by dressing actions on the solution space of Lorentzian Grassmannian systems.
 Keywords
isometric immersion;space forms;flat connection;nondegenerate;Lorentzian Grassmannian system;
 Language
English
 Cited by
 References
1.
M. Bruck, X. Du, J. Park, and C. L. Terng, The submanifold geometry of real Grassmannian systems, Mem. Amer. Math. Soc. 155 (2002), No. 735

2.
E. Cartan, Sur les uarietes de courbure constante d 'un espace euclidien ou noneuclidien, Bull. Soc. Math. France 47 (1920), 125-160

3.
D. Hilbert, Uber Flachen von konstanter Gausscher Krummung, Trans. Amer. Math. Soc. 2 (1901), 89-99

4.
B. O'Neill, Semi-Riemannian Geometry, Academic Press, 1983

5.
R. Palais and C. L. Terng, Critical Point Theory and Submanifold Geometry, Springer- Verag, LNM 1353, 1988

6.
J. Park,, Riemannian submanifolds in Lorentzian manifolds with the same constant curvatures, Bull. Korean Math. Soc. 39 (2002), 237-249

7.
K. Tenenblat, Backlund's theorem for submanifolds of space forms and a generalized wave equation, Boll. Soc. Brasil. Mat. 16 (1985), 67-92

8.
K. Tenenblat and C. L. Terng, Backlund's theorem for n-dimensional submanifolds of $R^{2n-1}$, Ann. Math. 111 (1980), 477-490 crossref(new window)

9.
C. L. Terng, A higher dimensional generalization of the sine-Gordon equation and its soliton theory, Ann. Math. 111 (1980), 491-510 crossref(new window)

10.
C. L. Terng, Soliton equations and differential geometry, Jour. Diff. Geom. 45(1997), 407-445

11.
K. Uhlenbeck, Harmonic maps into Lie group (classical solutions of the Chiral model), Jour. Diff. Geom. 30 (1989), 1-50