JOURNAL BROWSE
Search
Advanced SearchSearch Tips
STRONG LAWS FOR WEIGHTED SUMS OF I.I.D. RANDOM VARIABLES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
STRONG LAWS FOR WEIGHTED SUMS OF I.I.D. RANDOM VARIABLES
Cai, Guang-Hui;
  PDF(new window)
 Abstract
Strong laws are established for linear statistics that are weighted sums of a random sample. We show extensions of the Marcinkiewicz-Zygmund strong laws under certain moment conditions on both the weights and the distribution. The result obtained extends and sharpens the result of Sung ([12]).
 Keywords
almost sure convergence;Marchinkiewicz-Zygmund strong laws;weighted sums;i.i.d.;
 Language
English
 Cited by
1.
STRONG LAWS FOR WEIGHTED SUMS OF I.I.D. RANDOM VARIABLES (II),;

대한수학회보, 2002. vol.39. 4, pp.607-615 crossref(new window)
2.
ALMOST SURE CONVERGENCE FOR WEIGHTED SUMS OF NA RANDOM VARIABLES,;;;;;

Journal of the Korean Statistical Society, 2005. vol.34. 4, pp.263-272
3.
ON THE ALMOST SURE CONVERGENCE OF WEIGHTED SUMS OF NEGATIVELY ASSOCIATED RANDOM VARIABLES,;;;;

대한수학회논문집, 2005. vol.20. 3, pp.539-546 crossref(new window)
1.
On Complete Convergence for Weighted Sums ofρ*-Mixing Random Variables, Abstract and Applied Analysis, 2013, 2013, 1  crossref(new windwow)
 References
1.
Z. D. Bai and P. E. Cheng, Marcinkiewicz strong laws for linear statistics, Statist. Probab. Lett. 46 (2000), 105-112 crossref(new window)

2.
B. D. Choi and S. H. Sung, Almost sure convergence theorems of weighted sums of random variables, Stochastic Anal. Appl. 5 (1987), 365-377 crossref(new window)

3.
Y. S. Chow and H. Teicher, Probability Theory: Independence, Interchangeability, Martingales, Springer-Verlag, New York, 3rd ed. 1997

4.
J. Cuzick, A strong law for weighted sums of i.i.d. random variables, J. Theoret. Probab. 8 (1995), 625-641 crossref(new window)

5.
P. Erdos, On a theorem of Hsu-Robbins, Ann. Math. Statist. 20 (1949), 286-291 crossref(new window)

6.
P. L. Hsu adn H. Robbins, Complete convergence and the law of larege numbers, Proc. Nat. Acad. Sci. (USA) 33 (1947), no. 2, 25-31

7.
D. K. Joag and F. Proschan, Negative associated of random variables with application, Ann. Statist. 11 (1983), 286-295 crossref(new window)

8.
V. V. Petrov, Limit theorems of probability theory sequences of independent random variables, Oxford, Oxford Science Publications, 1995

9.
Q. M. Shao, A comparison theorem on moment inequalities between Negatively associated and independent random variables, J. Theoreti. Probab. 13 (2000), 343-356 crossref(new window)

10.
W. Stout, Almost sure convergence, New York, Academic Press, 1974

11.
S. H. Sung, Strong laws for weighted sums of i.i.d. random variables, Statist. Probab. Lett. 52 (2001), 413-419 crossref(new window)

12.
S. H. Sung, Strong laws for weighted sums of i.i.d. random variables (II), Bull. Korean. Math. Soc. 39 (2002), no. 4, 607-615 crossref(new window)

13.
W. B. Wu, On the strong convergence of a weighted sums Statist., Probab. Lett. 44 (1999), 19-22 crossref(new window)