JOURNAL BROWSE
Search
Advanced SearchSearch Tips
FUNCTIONAL CENTRAL LIMIT THEOREMS FOR MULTIVARIATE LINEAR PROCESSES GENERATED BY DEPENDENT RANDOM VECTORS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
FUNCTIONAL CENTRAL LIMIT THEOREMS FOR MULTIVARIATE LINEAR PROCESSES GENERATED BY DEPENDENT RANDOM VECTORS
Ko, Mi-Hwa;
  PDF(new window)
 Abstract
Let be an m-dimensional linear process defined by $\mathbb{X}_t
 Keywords
functional central limit theorem;Linear process;moving average process;negatively associated;martingale difference;
 Language
English
 Cited by
1.
A Central Limit Theorem for the Linear Process in a Hilbert Space under Negative Association,;

Communications for Statistical Applications and Methods, 2009. vol.16. 4, pp.687-696 crossref(new window)
1.
A Central Limit Theorem for the Linear Process in a Hilbert Space under Negative Association, Communications for Statistical Applications and Methods, 2009, 16, 4, 687  crossref(new windwow)
 References
1.
D. J. Aldous and G. K. Eagleson, On mixing and stability of limit theorems, Ann. Probability. 6 (1978), 325-331 crossref(new window)

2.
G. J. Babu and M. Ghosh, A ranldom functional central limit theorem for martingales, Acta. Math. Scie. Hungar. 27 (1976), 301-306 crossref(new window)

3.
P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968

4.
P. J. Brockwell and R. A. Davis, Time Series: Theory and Methods 2nd ed., Springer, New York, 1987

5.
R. M. Burton, A. R. Darbrowski, and H. Dehling, An invariance principle for weakly associated random vectors, Stoc. Proc. and Appl. 23 (1986), 301-306 crossref(new window)

6.
I. Fakhre-Zakeri and S. Lee, On functional centmllimit theorems for multivariate linear processes with applications to sequential estimation, J. Stat. Plan. Inf. 3 (2000), 11-23

7.
W. A. Fuller, Introduction to Statistical Time-Series, 2nd Edition. Wiley Inc, New York, 1996

8.
T. S. Kim, Y. K. Choi, and M. H. Ko, The random functional central limit theorem for multivariate martingale difference, Taiwanese J. Math. accepted, (2006)

9.
C. M. Newman, Asymptotic independence and limit theorems for positively and negatively dependent random variables, in: Tong, Y.L., ed., IMS Lecture Notes-Monograph series. 5 (1984), 127-140

10.
D. Pollard, Convergence of Stochastic Processes, Wiley, New York, 1984

11.
Q. M. Shao, A comparison theorem on maximum inequalities between negatively associated and independent random variables, J. Theor. Probab. 13 (2000), 343-356 crossref(new window)