JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CONVERGENCE OF APPROXIMATE SOLUTIONS TO SCALAR CONSERVATION LAWS BY DEGENERATE DIFFUSION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
CONVERGENCE OF APPROXIMATE SOLUTIONS TO SCALAR CONSERVATION LAWS BY DEGENERATE DIFFUSION
Hwang, Seok;
  PDF(new window)
 Abstract
In this paper, we show the convergence of approximate solutions to the convective porous media equation using methodology developed in [8]. First, we obtain the approximate transport equation for the given convective porous media equation. Then using the averaging lemma, we obtain the convergence.
 Keywords
hyperbolic conservation laws;convective porous media equation;kinetic formulation;averaging lemmas;
 Language
English
 Cited by
 References
1.
M. C. Bustos, F. Concha, R. Burger, and E. M. Tory, Sedimentation and Thickening: Phenomenological Foundation and Mathematical Theory, Kluwer Academic Publishers, Dordrecht, Netherlands, 1999

2.
J. Carrillo, Entropy solutions for nonlinear degenerate problems, Arch. Ration. Mech. Anal. 147 (1999), 269-361 crossref(new window)

3.
G. Chavent and J. Jaffre, Mathematical Models and Finite Elements for Reservoir Simulation, North Holland, Amsterdam, 1986

4.
R. J. DiPerna, Measure-valued solutions to conservation laws, Arch. Ration. Mech. Anal. 88 (1985), 223-270 crossref(new window)

5.
L. Hormander, The Analysis of linear Partial Differential Operators, Springer-Verlag, New York, 1990

6.
S. Hwang, Kinetic decomposition for kinetic models of BGK type, J. Differential equations 190 (2003), no. 2, 353-363 crossref(new window)

7.
S. Hwang, Kinetic decomposition for singularly perturbed higher order partial differential equations, J. Differential equations 200 (2004), no. 2, 191-205 crossref(new window)

8.
S. Hwang and A. E. Tzavaras, Kinetic decomposition of approximate solutions to conservation laws: applications to relaxation and diffusion-dispersion approximations, Comm. Partial Differential Equations 27 (2002), 1229-1254 crossref(new window)

9.
S. N. Kruzhkov, First order quasilinear equations with several independent variables, Math. USSR Sbornik 10 (1971), 217-243 crossref(new window)

10.
P. L. Lions, B. Perthame, and E. Tadmor, A kinetic formulation of scalar multidimensional conservation laws, J. Amer. Math. Soc. 7 (1994), 169-191 crossref(new window)

11.
P. Marcati, Convergence of approximate solutions to scalar conservation laws by degenerate diffusion, Rend. Sem. Mat. Univ. Padova 81 (1989), 65-78

12.
P. Marcati, Approximate solutions to conservation laws via convective parabolic equations, Comm. Partial Differential Equations 13 (1988), no. 3, 321-344 crossref(new window)

13.
P. Marcati and R. Natalini, Convergence of the pseudoviscosity approximation for conservation laws, Nonlinear Anal. 23 (1994), 621-628 crossref(new window)

14.
O. A. Oleinik, Uniqueness and stability of the generalized solution of the Cauchy problem for a quasi-linear equation, Uspekhi Mat. Nauk 14 (1959), 165-170

15.
O. A. Oleinik, Uniqueness and stability of the generalized solution of the Cauchy problem for a quasi-linear equation, Amer. Math. Soc. Transl. Ser. 2 33 (1963), 285-290

16.
S. Osher and J. Ralston, $L^1$-stability of traveling waves with applications to convective porous media flow, Comm. Pure Appl. Math. 35 (1982), 737-749 crossref(new window)

17.
B. Perthame, Uniqueness and error estimates in first order quasilinear conservation laws via the kinetic entropy defect measure, J. Math. Pures Appl. 77 (1998), 1055-1064 crossref(new window)

18.
B. Perthame, Kinetic formulation of Conservation laws, Oxford University Press, 2002

19.
B. Perthame and P. E. Souganidis, A limiting case for velocity averaging, Ann. Sci. Ecole Norm. Sup. 31 (1998), 591-598

20.
B. Perthame and A. E. Tzavaras, Kinetic formulation for systems of two conservation laws and elastodynamics, Arch. Ration. Mech. Anal. 155 (2000), 1-48 crossref(new window)

21.
M. E. Schonbek, Convergence of solutions to nonlinear dispersive equations, Comm. Partial Differential Equations 7 (1982), 959-1000 crossref(new window)

22.
A. Szepessy, An existence result for scalar conservation laws using measure-valued solutions, Comm. Partial Differential Equations 14 (1989), 1329-1350 crossref(new window)

23.
L. Tartar, Compensated compactness and applications to partial differential equations, in Nonlinear Analysis and Mechanics, Knops, R.J., Eds.; Heriot-Watt Symposium, Pitman Research Notes in Mathematics, Pitman : Boston, 1979; Vol. 4, 136-192

24.
L. Tartar, CBMS Lecture Notes, (in preparation)

25.
A. I. Vol'pert and S. I. Hudjaev, Cauchy problem for degenerate second order quasilinear parabolic equations, Math. USSR Sbornik 7 (1969), 365-387 crossref(new window)