JOURNAL BROWSE
Search
Advanced SearchSearch Tips
NOTES ON CARLESON TYPE MEASURES ON BOUNDED SYMMETRIC DOMAIN
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
NOTES ON CARLESON TYPE MEASURES ON BOUNDED SYMMETRIC DOMAIN
Choi, Ki-Seong;
  PDF(new window)
 Abstract
Suppose that is a finite positive Borel measure on bounded symmetric domain is the Euclidean volume measure such that . Suppose 1 < p < and r > 0. In this paper, we will show that the norms , and are are all equivalent. We will also show that the inclusion mapping is compact if and only if lim .
 Keywords
Bergman space;Bergman projection;
 Language
English
 Cited by
1.
ON SOME MEASURE RELATED WITH POISSON INTEGRAL ON THE UNIT BALL,;;

충청수학회지, 2009. vol.22. 1, pp.89-99
2.
ON DUALITY OF WEIGHTED BLOCH SPACES IN ${\mathbb{C}}^n$,;;

충청수학회지, 2010. vol.23. 3, pp.523-534
3.
BLOCH-TYPE SPACE RELATED WITH NORMAL FUNCTION,;

충청수학회지, 2011. vol.24. 3, pp.533-541
4.
NOTES ON THE SPACE OF DIRICHLET TYPE AND WEIGHTED BESOV SPACE,;

충청수학회지, 2013. vol.26. 2, pp.393-402 crossref(new window)
5.
TOEPLITZ TYPE OPERATOR IN ℂn,;

충청수학회지, 2014. vol.27. 4, pp.697-705 crossref(new window)
1.
NOTES ON THE SPACE OF DIRICHLET TYPE AND WEIGHTED BESOV SPACE, Journal of the Chungcheng Mathematical Society, 2013, 26, 2, 393  crossref(new windwow)
2.
TOEPLITZ TYPE OPERATOR IN ℂn, Journal of the Chungcheong Mathematical Society, 2014, 27, 4, 697  crossref(new windwow)
3.
NOTES ON α-BLOCH SPACE AND Dp(μ), Journal of the Chungcheong Mathematical Society, 2012, 25, 3, 543  crossref(new windwow)
 References
1.
C. A. Berger, L. A. Coburn, and K. H. Zhu, Function theory on Cartan domains and the Berezin-Toeplitz symbols calculus, Amer. J. Math. 110 (1988), 921-953 crossref(new window)

2.
D. Bekolle, C. A. Berger, L. A. Coburn, and K. H. Zhu, BMO in the Bergman metric on bounded symmetric domain, J. Funct. Anal. 93 (1990), 310-350 crossref(new window)

3.
K. S. Choi, Lipschitz type inequality in Weighted Bloch spaces $B_q$, J. Korean Math. Soc. 39 (2002), no. 2, 277-287

4.
K. S. Choi, Little Hankel operators on Weighted Bloch spaces in $C^n$, C. Korean Math. Soc. 18 (2003), no. 3, 469-479

5.
J. B. Conway, A course in Functional Analysis, Springer Verlag, New York, 1985

6.
J. Faraut and A. Korany, Function spaces and reproducing kernels on bounded symmetric domains, J. Funct. Anal. 88 (1990), 64-89 crossref(new window)

7.
K. T. Hahn, Holomorphic mappings of the hyperbolic space into the complex Euclidean space and Bloch theorem, Canadian J. Math. 27 (1975), 446-458 crossref(new window)

8.
K. T. Hahn and K. S. Choi, Weighted Bloch spaces in $C^n$, J. Korean Math. Soc. 35 (1998), no. 2, 171-189

9.
L. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York/London, 1978

10.
L. Hwa, Harmonic analysis of functions of several complex variables in the classical domains, Amer. Math. Soc. providence, R. I. 6, 1963

11.
S. Krantz, Function theory of several complex variables, 2nd ed., Wadsworth & Brooks/Cole Math. Series, Pacific Grove, CA, 1992

12.
R. M. Timoney, Bloch functions of several variables, J. Bull. London Math. Soc. 12 (1980), 241-267 crossref(new window)

13.
K. H. Zhu, Operator theory in function spaces, Marcel Dekker, New York, 1990