JOURNAL BROWSE
Search
Advanced SearchSearch Tips
DETERMINATION OF ALL SUBFIELDS OF CYCLOTOMIC FUNCTION FIELDS WITH DIVISOR CLASS NUMBER TWO
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
DETERMINATION OF ALL SUBFIELDS OF CYCLOTOMIC FUNCTION FIELDS WITH DIVISOR CLASS NUMBER TWO
Ahn, Jae-Hyun; Jung, Hwan-Yup;
  PDF(new window)
 Abstract
In this paper, we determine all subfields of cyclotomic function fields with divisor class number two. We also give the generators of such fields explicitly.
 Keywords
cyclotomic function field;divisor class number;genus;
 Language
English
 Cited by
 References
1.
B. Angles, On Hilbert class field towers of global function feilds: in 'Drinfeld modules, modular schemes and applications,' 261-271, World Sci. Publishing, River Edge, NJ 1997

2.
R. Auer, Ray class fields of global function fields with many rational places, Dissertation at the University of Oldenburg, www.bis.uni-oldenburg.de/dissertation/ediss.html, 1999

3.
S. Bae, H. Jung, and J. Ahn, Class numbers of some abelian extensions of rational function fields, Math. Comp. 73 (2004), no. 245, 377-386 crossref(new window)

4.
D. Le Brigand, Classification of algebraic function fields with divisor class number two, Finite Fields Appl. 2 (1996), no. 2, 153-172 crossref(new window)

5.
H. L. Claasen, The group of units in GF(q)[x]=(a(x)), Nederl. Akad. Wetensch. Proc. Ser. A 80=Indag. Math. 39 (1977), no. 4, 245-255

6.
R. Clement, The genus field of an algebraic function field, J. Number Theory 40 (1992), no. 3, 359-375 crossref(new window)

7.
H. Jung and J. Ahn, Divisor class number one problem for abelian extensions over rational function fields, to appear in J. of Algebra

8.
H. Jung and J. Ahn, Determination of all subfields of cyclotomic function fields with genus one, Commun. Korean math. Soc. 20 (2005), no. 2, 259-273 crossref(new window)

9.
M. Kida and N. Murabayashi, Cyclotomic functions fields and divisor class number one, Tokyo J. Math. 14 (1991), no. 1, 45-56 crossref(new window)

10.
J. Leitzel, M. Madan, and C. Queen, Algebraic function fields with small class number. J. of Number Theory 7 (1975), 11-27 crossref(new window)

11.
M. Madan and C. Queen, Algebraic function fields of class number one, Acta Arith. 20 (1972), 423-432

12.
M. Rosen, Number theory in function fields. Graduate Texts in Mathematics 210, Springer-Verlag, New York, 2002

13.
H. Stichtenoth, Algebraic function fields and codes, Universitext, Springer-Verlag, (1993)

14.
L. Washington, Introduction to cyclotomic fields, Graduate Texts in Mathematics 83, Springer-Verlag, New York, 1997