JOURNAL BROWSE
Search
Advanced SearchSearch Tips
COMPOSITION OF BINOMIAL POLYNOMIAL
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
COMPOSITION OF BINOMIAL POLYNOMIAL
Choi, Eun-Mi;
  PDF(new window)
 Abstract
For an irreducible binomial polynomial $f(x)
 Keywords
iterated polynomial;Diophantine equation;ABC conjecture;
 Language
English
 Cited by
 References
1.
F. Beukers, The Diophantine equation $Ax^P$ + $By^q$ = $Cz^T$, Duke Math. J. 91 (1998), 61-88 crossref(new window)

2.
N. Bruin, The Diophantine equations $x^2 {\pm} y^4 = {\pm}z^6$ and $x^2 + y^8 = z^3$, Compositio Math. 118 (1999), 305-321 crossref(new window)

3.
N. Bruin, On powers as sums of two cubes, in Algorithmic Number theory, Prod. 4th International Symp. Lecture Notes in Computer Science 1838, Springer, New York, (2000), 169-184

4.
L. Danielson and B. Fein, On the irreducibility of the iterates of $x^n$ - b, Proc. Amer. Math. Soc. 130 (2001), 1589-1597 crossref(new window)

5.
H. Darmon, The equation $x^4-y^4=z^p$, C.R.Math. Rep. Acad. Sci. Canada 15 (1993), 286-290

6.
H. Darmon, The equation $x^n+y^n=z^2\;and\;x^n+y^n=z^3$, Int. Math. Res. Notices 10 (1993), 236-274

7.
H. Darmon and A. Granville, On the equations $z^m$ = F(x, y) and $Ax^p + By^q = Cz^r$; Bull. London Math. Soc. 27 (1995), 513-543 crossref(new window)

8.
H. Darmon and L. Merel, Widning quotients and some variants of Fermat's Last Theorem, J. Reine Angew. Math. 490 (1997), 81-100

9.
B. Fein and M. Schacker, Properties of iterates and composites of polynomials, J. London Math. Soc. 54 (1996), 489-497 crossref(new window)

10.
A. Kraus, Sur l'equation $a^3+b^3=c^p$, Experiment Math. 7 (1998), 1-13 crossref(new window)

11.
A. Kraus, On the equation $x^p+y^p=z^r$, A survey, Ramanujan 3 (1999), 315-333 crossref(new window)

12.
R. W. K. Odoni, The Galois theory of iterates and composites of polynomials, Proc. London Math. Soc. 51 (1985), 385-414 crossref(new window)

13.
R. W. K. Odoni, Realising wreath products of cyclic groups as Galois groups, Mathematika 35 (1988), 101-113 crossref(new window)

14.
B. Poonen, Some Diophantine equations of the form $x^n+y^n=z^m$, Acta Arith. LXXXVI 3 (1998), 193-205

15.
M. Stoll, Galois groups over Q of some iterated polynomials, Arch. Math. 59 (1992), 239-244 crossref(new window)