JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A NOTE ON THE MONOTONE INTERVAL-VALUED SET FUNCTION DEFINED BY THE INTERVAL-VALUED CHOQUET INTEGRAL
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A NOTE ON THE MONOTONE INTERVAL-VALUED SET FUNCTION DEFINED BY THE INTERVAL-VALUED CHOQUET INTEGRAL
Jang, Lee-Chae;
  PDF(new window)
 Abstract
At first, we consider nonnegative monotone interval-valued set functions and nonnegative measurable interval-valued functions. In this paper we investigate some properties and structural characteristics of the monotone interval-valued set function defined by an interval-valued Choquet integral.
 Keywords
interval-valued set functions;interval-valued functions;fuzzy measures;Choquet integrals;
 Language
English
 Cited by
1.
구간치 쇼케이적분에 의해 정의된 단조 구간치 집합함수의 구조적 성질에 관한 연구,장이채;

한국지능시스템학회논문지, 2008. vol.18. 3, pp.311-315 crossref(new window)
2.
단조집합함수에 의해 정의된 구간치 쇼케이적분에 대한 르베그형태 정리에 관한 연구,장이채;김태균;

한국지능시스템학회논문지, 2007. vol.17. 6, pp.749-753 crossref(new window)
3.
THE AUTOCONTINUITY OF MONOTONE INTERVAL-VALUED SET FUNCTIONS DEFINED BY THE INTERVAL-VALUED CHOQUET INTEGRAL,;

호남수학학술지, 2008. vol.30. 1, pp.171-183 crossref(new window)
4.
구간치 퍼지측도와 관련된 수게노적분에 의해 모델화된 언어 정량자에 관한 연구,장이채;김태균;김현미;

한국지능시스템학회논문지, 2010. vol.20. 1, pp.1-6 crossref(new window)
5.
On Choquet Integrals with Respect to a Fuzzy Complex Valued Fuzzy Measure of Fuzzy Complex Valued Functions,;;

International Journal of Fuzzy Logic and Intelligent Systems, 2010. vol.10. 3, pp.224-229 crossref(new window)
6.
Some Properties of Choquet Integrals with Respect to a Fuzzy Complex Valued Fuzzy Measure,;;

International Journal of Fuzzy Logic and Intelligent Systems, 2011. vol.11. 2, pp.113-117 crossref(new window)
7.
Some Characterizations of the Choquet Integral with Respect to a Monotone Interval-Valued Set Function,;

International Journal of Fuzzy Logic and Intelligent Systems, 2013. vol.13. 1, pp.83-90 crossref(new window)
1.
Another Gould Type Integral with Respect to a Multisubmeasure, Annals of the Alexandru Ioan Cuza University - Mathematics, 2011, 57, 1  crossref(new windwow)
2.
On Choquet Integrals with Respect to a Fuzzy Complex Valued Fuzzy Measure of Fuzzy Complex Valued Functions, International Journal of Fuzzy Logic and Intelligent Systems, 2010, 10, 3, 224  crossref(new windwow)
3.
A note on the interval-valued generalized fuzzy integral by means of an interval-representable pseudo-multiplication and their convergence properties, Fuzzy Sets and Systems, 2013, 222, 45  crossref(new windwow)
4.
A note on Linguistic quantifiers modeled by Sugeno integral with respect to an interval-valued fuzzy measures, Journal of Korean Institute of Intelligent Systems, 2010, 20, 1, 1  crossref(new windwow)
5.
Some Properties of Choquet Integrals with Respect to a Fuzzy Complex Valued Fuzzy Measure, International Journal of Fuzzy Logic and Intelligent Systems, 2011, 11, 2, 113  crossref(new windwow)
6.
Some Characterizations of the Choquet Integral with Respect to a Monotone Interval-Valued Set Function, International Journal of Fuzzy Logic and Intelligent Systems, 2013, 13, 1, 83  crossref(new windwow)
7.
Some properties of the interval-valued g¯-integrals and a standard interval-valued g¯-convolution, Journal of Inequalities and Applications, 2014, 2014, 1, 88  crossref(new windwow)
8.
THE AUTOCONTINUITY OF MONOTONE INTERVAL-VALUED SET FUNCTIONS DEFINED BY THE INTERVAL-VALUED CHOQUET INTEGRAL, Honam Mathematical Journal, 2008, 30, 1, 171  crossref(new windwow)
9.
Remarks on monotone interval-valued set multifunctions, Information Sciences, 2014, 259, 225  crossref(new windwow)
 References
1.
J. Aubin, Set-valued analysis, 1990, Birkauser Boston

2.
R. J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl. 12 (1965), 1-12 crossref(new window)

3.
M. J. Bilanos, L. M. de Campos and A. Gonzalez, Convergence properties of the monotone expectation and its application to the extension of fuzzy measures, Fuzzy Sets and Systems 33 (1989), 201-212 crossref(new window)

4.
L. M. de Campos and M. J. Bilanos, Characterization and comparison of Sugeno and Choquet integrals, Fuzzy Sets and Systems 52 (1992), 61-67 crossref(new window)

5.
W. Cong, RSu integral of interval-valued functions and fuzzy-valued functions redefined, Fuzzy Sets and Systems 84 (1996), 301-308 crossref(new window)

6.
L. C. Jang and J. S. Kwon, On the representation of Choquet integrals of set-valued functions and null sets, Fuzzy Sets and Systems 112 (2000), 233-239 crossref(new window)

7.
L. C. Jang, T. Kim, and J. D. Jeon, On set-valued Choquet intgerals and convergence theorems, Advanced Studies and Contemporary Mathematics 6 (2003), no. 1, 63-76

8.
L. C. Jang, T. Kim, and J. D. Jeon, On set-valued Choquet intgerals and convergence theorems (II), Bull. Korean Math. Soc. 40 (2003), no. 1, 139-147 crossref(new window)

9.
L. C. Jang, T. Kim, and D. Park, A note on convexity and comonotonically additivity of set-valued Choquet intgerals, Far East J. Appl. Math. 11 (2003), no. 2, 137-148

10.
L. C. Jang, T. Kim, J. D. Jeon, and W. J. Kim, On Choquet intgerals of measurable fuzzy number-valued functions , Bull. Korean Math. Soc. 41 (2004), no. 1, 95-107

11.
L. C. Jang, Interval-valued Choquet integrals and their applications, J. of Applied Mathematics and computing 16 (2004), no. 1-2, 429-443

12.
T. Murofushi and M. Sugeno, An interpretation of fuzzy measures and the Choquet integral as an integral with respect to a fuzzy measure, Fuzzy Sets and Systems 29 (1989), 201-227 crossref(new window)

13.
T. Murofushi and M. Sugeno, A theory of Fuzzy measures: representations, the Choquet integral, and null sets, J. Math. Anal. and Appl. 159 (1991), 532-549 crossref(new window)

14.
T. Murofushi and M. Sugeno, RSome quantities represented by Choquet integral, Fuzzy Sets and Systems 56 (1993), 229-235 crossref(new window)

15.
H. Suzuki, On fuzzy measures de칗ed by fuzzy integrals, J. of Math. Anal. Appl. 132 (1998), 87-101

16.
Z. Wang, The autocontinuity of set function and the fuzzy integral, J. of Math. Anal. Appl. 99 (1984), 195-218 crossref(new window)

17.
Z. Wang, On the null-additivity and the autocontinuity of fuzzy measure, Fuzzy Sets and Systems 45 (1992), 223-226 crossref(new window)

18.
Z. Wang, G. J. Klir, and W. Wang, Fuzzy measures defined by fuzzy integral and their absolute continuity, J. Math. Anal. Appl. 203 (1996), 150-165 crossref(new window)

19.
Z. Wang, G. J. Klir, and W. Wang, Monotone set functions defined by Choquet integral, Fuzzy measures defined by fuzzy integral and their absolute continuity, Fuzzy Sets and Systems 81 (1996), 241-250 crossref(new window)

20.
R. Yang, Z. Wang, P.-A. Heng, and K. S. Leung, Fuzzy numbers and fuzzification of the Choquet integral, Fuzzy Sets and Systems 153 (2005), 95-113 crossref(new window)

21.
D. Zhang, C. Guo, and D. Liu, Set-valued Choquet integrals revisited, Fuzzy Sets and Systems 147 (2004), 475-485 crossref(new window)