JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CONTINUITY FOR MULTILINEAR INTEGRAL OPERATORS ON BESOV SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
CONTINUITY FOR MULTILINEAR INTEGRAL OPERATORS ON BESOV SPACES
Lanzhe, Liu;
  PDF(new window)
 Abstract
The continuity for the multilinear operators associated to some non-convolution type integral operators on Besov spaces are obtained. The operators include Littlewood-Paley operators, Marcinkiewicz operators and Bochner-Riesz operator.
 Keywords
multilinear operators;Littlewood-Paley operator;Marcinkiewicz operator;Bochner-Riesz operator;Besov space;
 Language
English
 Cited by
 References
1.
S. Chanillo, A note on commutators, Indiana Univ. Math. J. 31 (1982), 7-16 crossref(new window)

2.
W. G. Chen, Besov estimates for a class of multilinear singular integrals, Acta Math. Sinica 16 (2000), 613-626 crossref(new window)

3.
J. Cohen, A sharp estimate for a multilinear singular integral on $R^n$, Indiana Univ. Math. J. 30 (1981), 693-702 crossref(new window)

4.
J. Cohen and J. Gosselin, On multilinear singular integral operators on $R^n$, Studia Math. 72 (1982), 199-223

5.
J. Cohen and J. Gosselin, A BMO estimate for multilinear singular integral operators, Illinois J. Math. 30 (1986), 445-465

6.
R. Coifman and Y. Meyer, Wavelets, Calderon-Zygmund and multilinear operators, Cambridge Studies in Advanced Math. 48, Cambridge University Press, Cambridge, 1997

7.
S. Janson, Mean oscillation and commutators of singular integral operators, Ark. Math. 16 (1978), 263-270 crossref(new window)

8.
L. Z. Liu, Triebel-Lizorkin space estimates for multilinear operators of sublinear operators, Proc. Indian Acad. Sci. (Math. Sci) 113 (2003), 379-393 crossref(new window)

9.
L. Z. Liu, The continuity of commutators on Triebel-Lizorkin spaces, Integral Equations and Operator Theory 49 (2004), 65-76 crossref(new window)

10.
L. Z. Liu, Boundedness of multilinear operator on Triebel-Lizorkin spaces, Inter J. of Math. and Math. Sci. 5 (2004), 259-272 crossref(new window)

11.
L. Z. Liu, Boundedness for multilinear Littlewood-Paley operators on Triebel-Lizorkin spaces, Methods and Applications of Analysis 10 (2004), 603-614

12.
L. Z. Liu, On boundedness of multilinear Littlewood-Paley operators, Soochow J. of Math. 31 (2005), 95-106

13.
L. Z. Liu, Boundedness for Multilinear Marcinkiewicz Operators on Triebel-Lizorkin Spaces, Funct. Approx. Comment. Math. 33 (2005), 73-84

14.
S. Z. Lu, Four lectures on real $H^p$ spaces, World Scientific, River Edge, NI, 1995

15.
S. Z. Lu, Y. Meng, and Q. Wu, Lipschitz estimates for multilinear singular integrals, Acta Math. Scientia 24(B) (2004), 291-300

16.
S. Z. Lu, Q. Wu, and D. C. Yang, Boundedness of commutators on Hardy type spaces, Sci. China Ser. A 45 (2002), no. 8, 984-997 crossref(new window)

17.
S. Z. Lu and D. C. Yang, The weighted Herz type Hardy spaces and its applications, Sci. in China ser. A 38 (1995), 662-673

18.
M. Paluszynski, Characterization of the Besov spaces via the commutator operator of Coifman, Rochberg and Weiss, Indiana Univ. Math. J. 44 (1995), 1-17

19.
E. M. Stein, Harmonic Analysis: real variable methods, orthogonality and oscillatory integrals, Princeton Univ. Press, Princeton NJ, 1993

20.
A. Torchinsky, The real variable methods in harmonic analysis, Pure and Applied Math., 123, Academic Press, New York, 1986

21.
A. Torchinsky and S. Wang, A note on the Marcinkiewicz integral, Colloq. Math. 60/61 (1990), 235-243

22.
D. C. Yang, The central Campanato spaces and its applications, Approx. Theory and Appl.10 (1994), no. 4, 85-99 crossref(new window)