JOURNAL BROWSE
Search
Advanced SearchSearch Tips
PRODUCT OF PL FIBRATORS AS CODIMENSION-k FIBRATORS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
PRODUCT OF PL FIBRATORS AS CODIMENSION-k FIBRATORS
Im, Young-Ho; Kim, Yong-Kuk;
  PDF(new window)
 Abstract
We describe some conditions under which the product of two groups with certain property is a group with the same property, and we describe some conditions under which the product of hopfian manifolds is another hopfian manifold. As applications, we find some PL fibrators among the product of fibrators.
 Keywords
approximate fibration;degree of a map;condimension-k PL fibrator;hopfian manifold;normally cohopfian;sparsely abelian;
 Language
English
 Cited by
 References
1.
D. S. Coram and P. F. Duvall, Approximate fibrations, Rocky Mountain J. Math. 7 (1977), 275-288 crossref(new window)

2.
D. S. Coram and P. F. Duvall, Approximate fibrations and a movability condition for maps, Pacific J. Math. 72 (1977), 41-56 crossref(new window)

3.
R. J. Daverman, PL maps with manifold fibers, J. London Math. Soc. (2) 45 (1992), no. 1, 180-192 crossref(new window)

4.
R. J. Daverman, Hyperhopfian groups and approximate fibrations, Compositio Math. 86 (1993), 159-176

5.
R. J. Daverman, Manifolds that induce approximate fibrations in the PL category, Topology Appl. 66 (1995), 267-297 crossref(new window)

6.
R. J. Daverman, Codimension 2 nonfibrators with finite fundamental groups, Proc. Amer. Math. Soc. 127 (1999), no. 3, 881-888

7.
R. J. Daverman, Y. H. Im, and Y. Kim, Products of Hopfian manifolds and codimension-2 fibrators, Topology Appl. 103 (2000), no. 3, 323-338 crossref(new window)

8.
R. J. Daverman, Y. H. Im, and Y. Kim, Connected sums of 4-manifolds as codimension-k fibrators, J. London Math. Soc. (2) 68 (2003), no. 1, 206-222 crossref(new window)

9.
R. J. Daverman, Y. H. Im, and Y. Kim, PL fibrator properties of partially aspherical manifolds, Topology Appl. 140 (2004), no. 2-3, 181-195 crossref(new window)

10.
M. Hall, Subgroups of finite index in free groups, Canadian J. Math. 1 (1949), 187-190 crossref(new window)

11.
J.-C. Hausmann, Geometric hopfian and non-hopfian situations, in Geometry and Topology (C. McCrory and T. Shifrin, eds.), Lecture Notes in Pure Appl. Math., Marcel Decker, Inc., New York, 1987, pp. 157-166

12.
S.-T. Hu, Homotopy Theory, Academic press (1959)

13.
Y. H. Im and Y. Kim, Necessary and suffient conditions for s-hopfian manifolds to be codimension-2 fibrators, Proc. Amer. Math. Soc. 129 (2001), no. 7, 2135-2140 crossref(new window)

14.
Y. Kim, Manifolds with hyperhopfian fundamental group as codimension-2 fibrators, Topology Appl. 96 (1999), 241-248 crossref(new window)

15.
W. Magnus, A. Karass, and D. Solitar, Combinatorial Group Theory, Dover Publ., Inc., New York, 1976

16.
S. Rosset, A vanishing theorem for Euler characteristics, Math. Z. 185 (1985), 211-215 crossref(new window)