JOURNAL BROWSE
Search
Advanced SearchSearch Tips
COMMON FIXED POINT THEOREM FOR WEAKLY COMPATIBLE OF FOUR MAPPINGS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
COMMON FIXED POINT THEOREM FOR WEAKLY COMPATIBLE OF FOUR MAPPINGS
Ghadikolaee, Shaban Sedghi; Shobe, Nabi;
  PDF(new window)
 Abstract
In this paper, a common fixed point theorem for weak compatible maps in complete fuzzy metric spaces is proved.
 Keywords
fuzzy contractive mapping;complete fuzzy metric space;
 Language
English
 Cited by
 References
1.
M. S. El Naschie, On the uncertainty of Cantorian geometry and the two-slit experiment, Chaos Solitons Fractals 9 (1998), no. 3, 517-529 crossref(new window)

2.
M. S. El Naschie, A review of E -infinity theory and the mass spectrum of high energy particle physics, Chaos, Solitons and Fractals 19 (2004), 209-236 crossref(new window)

3.
M. S. El Naschie, On a fuzzy Kahler-like Manifold which is consistent with two-slit experiment, Int. J. of Nonlinear Science and Numerical Simulation 6 (2005), 95-98

4.
M. S. El Naschie, The idealized quantum two-slit gedanken experiment revisited-criticism and reinterpretation, Chaos, Solitons and Fractals 21 (2006), 9-13 crossref(new window)

5.
A. George and P. Veeramani, On some result in fuzzy metric space, Fuzzy Sets Syst. 64 (1994), 395-399 crossref(new window)

6.
J. Goguen, $\iota$-fuzzy sets, J. Math. Anal. Appl. 18 (1967), 145-174 crossref(new window)

7.
V. Gregori and A. Sapena, On fixed-point theorem in fuzzy metric spaces, Fuzzy Sets and Sys, 125 (2002), 245-252 crossref(new window)

8.
G. Jungck and B. E. Rhoades, Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math. 29 (1998), no. 3,227-238

9.
I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica 11 (1975), 326-334

10.
J. Rodriguez Lopez and S. Ramaguera, The Hausdorff fuzzy metric on compact sets, Fuzzy Sets Sys. 2141 (2004), 273-283 crossref(new window)

11.
D. Mihet, A Banach contraction theorem in fuzzy metric spaces, Fuzzy Sets Sys. 144 (2004), 431-439 crossref(new window)

12.
R. Saadati and J. H. Park, On the intuitionistic fuzzy topological spaces, Chaos, Solitons and Fractals 21 (2006), 331-344 crossref(new window)

13.
R. Saadati and S. Sedghi, A common fixed point theorem for R-weakly commuting maps in fuzzy metric spaces, 6th Iranian Conference on Fuzzy Systems (2006), 387-391

14.
S. Sedghi, N. Shobe, and M. A. Selahshoor, A common fixed point theorem for Four mappings in two complete fuzzy metric spaces, Advances in Fuzzy Mathematics Vol. 1, 1 (2006)

15.
S. Sedghi, D. Turkoglu, and N. Shobe, Generalization common fixed point theorem in complete fuzzy metric spaces, Journal of Computational Analysis and Applictions Vol. 9, 3 (2007), 337-348

16.
B. Schweizer, H. Sherwood, and R. M. Tardiff, Contractions on PM-space examples and counterexamples, Stochastica 1 (1988), 5-17

17.
B. Singh and S. Jain, A fixed point theorem in Menger space through weak compatibility, J. Math. Anal. Appl. 301 (2005), no. 2, 439-448 crossref(new window)

18.
G. Song, Comments on 'A common fixed point theorem in a fuzzy metric spaces', Fuzzy Sets Sys. 135 (2003), 409-413 crossref(new window)

19.
Y. Tanaka, Y. Mizno, and T. Kado, Chaotic dynamics in Friedmann equation, Chaos, Solitons and Fractals 24 (2005), 407-222 crossref(new window)

20.
R. Vasuki, Common fixed points for R-weakly commuting maps in fuzzy metric spaces, Indian J. Pure Appl. Math. 30 (1999), 419-423

21.
R. Vasuki Rand P. Veeramani, Fixed point theorems and Cauchy sequences in fuzzy metric spaces, Fuzzy Sets Sys. 135 (2003), 409-413 crossref(new window)

22.
L. A. Zadeh, Fuzzy sets, Inform and Control 8 (1965), 338-353 crossref(new window)