JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THREE-DIMENSIONAL NUMERICAL SIMULATIONS OF A PHASE-FIELD MODEL FOR ANISOTROPIC INTERFACIAL ENERGY
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
THREE-DIMENSIONAL NUMERICAL SIMULATIONS OF A PHASE-FIELD MODEL FOR ANISOTROPIC INTERFACIAL ENERGY
Kim, Jun-Seok;
  PDF(new window)
 Abstract
A computationally efficient numerical scheme is presented for the phase-field model of two-phase systems for anisotropic interfacial energy. The scheme is solved by using a nonlinear multigrid method. When the coefficient for the anisotropic interfacial energy is sufficiently high, the interface of the system shows corners or missing crystallographic orientations. Numerical simulations with high and low anisotropic coefficients show excellent agreement with exact equilibrium shapes. We also present spinodal decomposition, which shows the robustness of the pro-posed scheme.
 Keywords
phase-field model;anisotropy;interfacial energy;Cahn-Hilliard equation;nonlinear multigrid method;
 Language
English
 Cited by
1.
Kinetics modeling of precipitation with characteristic shape during post-implantation annealing, AIP Advances, 2015, 5, 11, 117211  crossref(new windwow)
2.
The Cahn-Hilliard Equation with Logarithmic Potentials, Milan Journal of Mathematics, 2011, 79, 2, 561  crossref(new windwow)
 References
1.
W. K. Burton, N. Cabrera, and F. C. Frank, The growth of crystals and the equilibrium structure of their surfaces, Trans. R. Soc. Lond. A 243 (1951), 299-358 crossref(new window)

2.
J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys. 28 (1958), 258-267 crossref(new window)

3.
J. J. Eggleston, G. B. McFadden, and P. W. Voorhees, A phase-field model for highly anisotropic interfacial energy, Physica D 150 (2001), 91-103 crossref(new window)

4.
D. J. Eyre, An unconditionally stable one-step scheme for gradient systems, Preprint, University of Utah, Salt Lake City, 1997

5.
F. C. Frank, Metal Surfaces, ASM, Cleveland, OH, 1963

6.
D. W. Hoffman and J. W. Cahn, A vector thermodynamics for anisotropic surfaces. I. Fundamentals and application to plane surface junctions, Surf. Sci. 31 (1972), 368-388 crossref(new window)

7.
J. S. Kim, A continuous surface tension force formulation for diffuse-interface models, J. Comput. Phys. 204 (2005), 784-804 crossref(new window)

8.
J. S. Kim and J. Sur, A hybrid method for higher-order nonlinear diffusion equations, Commun. Korean Math. Soc. 20 (2005), no. 1,179-193 crossref(new window)

9.
B. P. Vollmayr-Lee and A. D. Rutenberg, Fast and accurate coarsening simulation with an unconditionally stable time step, Phys Rev E, 68 (2003), 1-13 crossref(new window)

10.
W. W. Mullins, Proof that the two dimensional shape of minimum surface free energy is convex, J. Math. Phys. 3 (1962), 754-759 crossref(new window)

11.
M. Siegel, M. J. Miksis, and P. W. Voorhees, Evolution of material voids for highly anisotropic surface energy, J. Mech. Phys. Solids 52 (2004), 1319-1353 crossref(new window)

12.
T. Takaki, T. Hasebe, and Y. Tomita, Two-dimensional phase-field simulation of selfassembled quantum dot formation, J. Crystal Growth 287 (2006), 495-499 crossref(new window)

13.
U. Trottenberg, C. Oosterlee, and A. Schuller, MULTIGRID, Academic Press, 2001

14.
A. A. Wheeler, W. J. Boettinger, and G. B. McFadden, Phase-field model for isothermal phase transitions in binary alloys, Phys. Rev. A 45 (1992), 7424-7439 crossref(new window)

15.
Y. Wang, L. Q. Chen, and A. G. Khachaturyan, Kinetics of strain-induced morphological transformation in cubic alloys with a miscibility gap, Acta Metall. 41 (1993), 279-296 crossref(new window)

16.
A. A. Wheeler and G. B. McFadden, On the notion of a $\xi$-vector and a stress tensor for a general class of anisotropic diffuse interface models, Proc. R. Soc. Land. A 453 (1997), 1611-1630 crossref(new window)

17.
Y. W. Zhang, Self-organization, shape transition, and stability of epitaxially strained islands, Phys. Rev. B 61 (2000), 388-392 crossref(new window)