JOURNAL BROWSE
Search
Advanced SearchSearch Tips
PARTS FORMULAS INVOLVING INTEGRAL TRANSFORMS ON FUNCTION SPACE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
PARTS FORMULAS INVOLVING INTEGRAL TRANSFORMS ON FUNCTION SPACE
Kim, Bong-Jin; Kim, Byoung-Soo;
  PDF(new window)
 Abstract
In this paper we establish several integration by parts formulas involving integral transforms of functionals of the form $F(y)
 Keywords
Integral transform;convolution Product;first variation;integration by parts formula;Wiener integral;
 Language
English
 Cited by
1.
PARTS FORMULAS INVOLVING CONDITIONAL INTEGRAL TRANSFORMS ON FUNCTION SPACE,;;

Korean Journal of Mathematics, 2014. vol.22. 1, pp.57-69 crossref(new window)
1.
PARTS FORMULAS INVOLVING CONDITIONAL INTEGRAL TRANSFORMS ON FUNCTION SPACE, Korean Journal of Mathematics, 2014, 22, 1, 57  crossref(new windwow)
 References
1.
R. H. Cameron, The first variation of an indefinite Wiener integral, Proc. Amer. Math. Soc. 2 (1951), 914-924 crossref(new window)

2.
R. H. Cameron and W. T. Martin, Fourier- Wiener transforms of analytic functionals, Duke Math. J.12 (1945), 489-507 crossref(new window)

3.
R. H. Cameron and D. A. Storvick, An $L_{2}$ analytic Fourier-Feynman transform, Michigan Math. J. 23 (1976), 1-30 crossref(new window)

4.
R. H. Cameron and D. A. Storvick, Feynman integral of variations of functionals, Gaussian Random Fields (Nagoya, 1990), Ser. Probab. Statist. 1, World Sci. Publ. 1991, 144-157

5.
K. S. Chang, B. S. Kim, and I. Yoo, Integral transform and convolution of analytic functionals on abstract Wiener spaces, Numer. Funet. Anal. Optim. 21 (2000), 97-105 crossref(new window)

6.
T. Huffman, C. Park, and D. Skoug, Analytic Fourier-Feynman transforms and convolution, Trans. Amer. Math. Soc. 347 (1995), 661-673 crossref(new window)

7.
B. J. Kim, B. S. Kim, and D. Skoug, Integral transforms, convolution products, and first variations, Internat. J. Math. Math. Sci. 2004 (2004), 579-598 crossref(new window)

8.
B. S. Kim and D. Skoug, Integral transforms of functionals in $L_{2}$($C_{0}$[0, T]), Rocky Mountain J. Math. 33 (2003), 1379-1393 crossref(new window)

9.
Y. J. Lee, Integral transforms of analytic functions on abstract Wiener spaces, J. Funct. Anal. 47 (1982), 153-164 crossref(new window)

10.
C. Park and D. Skoug, Integration by parts formulas involving analytic Feynman integrals, PanAmer. Math. J. 8 (1998),1-11

11.
C. Park, D. Skoug, and D. Storvick, Relationships among the first variation, the convolution product, and the Fourier- Feynman transform, Rocky Mountain J. Math. 28 (1998), 1447-1468 crossref(new window)

12.
D. Skoug and D. Storvick, A survey of results involving transforms and convolutions in function space, Rocky Mountain J. Math. 34 (2004),1147-1176 crossref(new window)

13.
J. Yeh, Convolution in Fourier- Wiener transform, Pacific J. Math. 15 (1965), 731-738 crossref(new window)

14.
I. Yoo, Convolution and the Fourier- Wiener transform on abstract Wiener space, Rocky Mountain J. Math. 25 (1995), 1577-1587 crossref(new window)