JOURNAL BROWSE
Search
Advanced SearchSearch Tips
COMPARISON BETWEEN THE POSITIVE SCHEMES AND WENO FOR HIGH MACH JETS IN 1D
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
COMPARISON BETWEEN THE POSITIVE SCHEMES AND WENO FOR HIGH MACH JETS IN 1D
Ha, Young-Soo;
  PDF(new window)
 Abstract
Comparison of high Mach number jets using positive schemes and Weighted ENO methods is considered in this paper. The positive scheme introduced by [11, 14] and Weighted ENO [9, 10] have allowed us to simulate very high Mach numbers more than Mach 80. Simulations at high Mach numbers and with radiative cooling are essential for achieving detailed agreement with astrophysical images.
 Keywords
positive schemes;WENO;conservative laws;euler equation;
 Language
English
 Cited by
 References
1.
J. P. Borice and D. L.Book, Flux corrected transport I, SHASTA, A fluid fransport flgorithm that works, J. Comput. Phys. 11 (1973), 38-69 crossref(new window)

2.
J. Gressier, P. Villedieu, and J.M. Moschetta, Positivity of flux vector splitting schemes, J. Comput. Phys. 155 (1999), 199-220 crossref(new window)

3.
Y. Ha, C. L. Gardner, A. Gelb, and C-W. Shu, Numerical Simulation of High Mach Number Astrophysical Jets with Radiative Cooling J. Sci. Comput. 24 (2005), 29-44 crossref(new window)

4.
Y. Ha and Y. J. Kim, Explicit solutions to a convection-reaction equation and defects of numerical schemes, J. Comput. Phys. 220 (2006), 511-531 crossref(new window)

5.
A. Harten, P.D. Lax, and B. van Leer, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev. 25 (1983), no. 1, 35-61 crossref(new window)

6.
A. Harten, On a Class of High Resolution Total- Variation-Stable Finite-Difference Schemes, SIAM J. Numer. Anal. 21 (1984), no. 1, 1-23 crossref(new window)

7.
A. Harten and G. Zwas, Self-Adjusting Hybrid Schemes for Shock Computations, J. Comput. Phys. 9 (1972) 568-583 crossref(new window)

8.
J. J. Hester, K. R. Stapelfeldt, and J. A. Scowen, Hubble space telescope wide field planetary camera 2 observations of HH 1-2, Astrophysical Journal 116 (1998), 372-395 crossref(new window)

9.
G-S. Jiang and C-C. Wu, A High-Order WENO Finite Difference Scheme for the Equations of Ideal Magnetohydrodynamics, J. Comput. Phys, 150 (1999), 561-594 crossref(new window)

10.
G-S. Jiang and C-W. Shu, Efficient Implementation of Weighted ENO schemes, J. Comput. Phys. 126 (1996), 202-228 crossref(new window)

11.
P. D. Lax and X.-D. Liu, Solution of Two-Dimensional Riemann Problems of Gas Dynamics by Positive Schemes, SIAM J.Sci.Comput. 19 (1998), no. 2, 319-340 crossref(new window)

12.
P. D. Lax and B. Wendroff, Systems of conservation laws, Commun. Pure Appl. Math. 13 (1960), 217-237 crossref(new window)

13.
R. Liska and B. Wendroff, Comparison of Serveral Difference Schemes on 1D and 2D Test Problems for the Euler Equations, SIAM J. Sci. Comput. 25 (2003), no. 3, 995-1017 crossref(new window)

14.
X.-D. LID and P. D. LAX, Positive Schemes for Solving Multi-dimensional Hyperbolic Systems of Conservation Laws, J. Comp. Fluid Dynam. 5 (1996) 133-156

15.
R. J. LeVeque, Numerical Methods for Conservation Laws, Birkhauser Verlag, Basel (1992)

16.
P. L. Roe, Approximate Riemann solvers, paremeter vectors, and difference schemes, J. Comp. Phys. 43 (1981), 357-372 crossref(new window)

17.
T. Schmutzler and W. M. Tscharnuter, Effective radiative cooling in optically thin plasmas, Astronomy and Astrophysics 273 (1993), 318-330

18.
C.-W. Shu, Total-variation-diminshing time discretizations, SIAM J. Sci. Statist. Comput. 9 (1988), 1073-1084 crossref(new window)

19.
C.- W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock capturing schemes, II, J. Comput. Phys. 83 (1989), 32-78 crossref(new window)

20.
P. K. Sweby, High resolution schemes using flux limiters hyperbolic conservation laws, SIAM J.Numer. Anal. 21 (1984), no. 5, 995-1011 crossref(new window)

21.
E. F. Taro, Riemann Solvers and Numerical Methods for Fluid Dynamics, SpringerVerlag, New York, 1997