JOURNAL BROWSE
Search
Advanced SearchSearch Tips
HAUSDORFF DISTANCE BETWEEN THE OFFSET CURVE OF QUADRATIC BEZIER CURVE AND ITS QUADRATIC APPROXIMATION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
HAUSDORFF DISTANCE BETWEEN THE OFFSET CURVE OF QUADRATIC BEZIER CURVE AND ITS QUADRATIC APPROXIMATION
Ahn, Young-Joon;
  PDF(new window)
 Abstract
In this paper, we present the exact Hausdorff distance between the offset curve of quadratic curve and its quadratic approximation. To illustrate the formula for the Hausdorff distance, we give an example of the quadratic approximation of the offset curve of a quadratic curve.
 Keywords
quadratic curve;Hausdorff distance;Offset curve;control polygon;approximation;error;geometric continuity;
 Language
English
 Cited by
 References
1.
Y. J. Ahn, Conic Approximation of planar curves, Comp. Aided Desi. 33 (2001), no. 12, 867-872 crossref(new window)

2.
Y. J. Ahn, Helix approximation with conic and qadratic Bezier curves, Comp. Aided Geom. Desi. 22 (2005), no. 6, 551-565 crossref(new window)

3.
Y. J. Ahn and H. O. Kim, Approximation of circular arcs by Bezier curves, J. Comp. Appl. Math. 81 (1997), 145-163 crossref(new window)

4.
Y. J. Ahn and H. O. Kim, Curvatures of the quadratic rational Bezier curves, Comp. Math. Appl. 36 (1998), no. 9, 71-83 crossref(new window)

5.
Y. J. Ahn, H. O. Kim, and K. Y. Lee, $G^1$ arc spline approximation of quadratic Bezier curves, Comp. Aided Desi. 30 (1998), no. 8, 615-620 crossref(new window)

6.
Y. J. Ahn, Y. S. Kim, and Y. S. Shin, Approximation of circular arcs and offset curves by Bezier curves of high degree, J. Camp. Appl. Math. 167 (2004), 181-191 crossref(new window)

7.
G. Elber, I. K. Lee, and M. S. Kim, Comparing offset curve approximation method, IEEE Camp. Grap. Appl. 17 (1997), no. 3, 62-71 crossref(new window)

8.
G. Farin, Curvature continuity and offsets for piecewise conics, ACM Than. Grap. (1989), 89-99

9.
G. Farin, Curves and Surfaces for Computer Aided Geometric Design, Academic Press, San Diego, CA, 1993

10.
R. T. Farouki, Conic Approximation of Conic Offsets, J. Symb. Comp. 23 (1997), 301-313 crossref(new window)

11.
R. T. Farouki and J. K. Johnstone, The bisector of a point and a plane parametric curve, Comp. Aided Geom. Desi. 11 (1994), no. 2, 117-151 crossref(new window)

12.
R. T. Farouki and C. A. Neff, Analytic properties of plane offset curves, Comp. Aided Geom. Desi. 7 (1990), 83-99 crossref(new window)

13.
R. T. Farouki and T. W. Sederberg, Analysis of the offset to a parabola, Comp. Aided Geom. Desi. 8 (1995), 639-645 crossref(new window)

14.
S. H. Kim and Y. J. Ahn, Approximation of circular arcs by quartic Bezier curves, Comp. Aided Desi. 39 (2007), no. 6, 490-493 crossref(new window)

15.
I. K. Lee, M. S. Kim, and G. Elber, Planar curve offset based on circle approximation, Comp. Aided Desi. 28 (1996), 617-630 crossref(new window)