JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ORDER SYSTEMS, IDEALS AND RIGHT FIXED MAPS OF SUBTRACTION ALGEBRAS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ORDER SYSTEMS, IDEALS AND RIGHT FIXED MAPS OF SUBTRACTION ALGEBRAS
Jun, Young-Bae; Park, Chul-Hwan; Roh, Eun-Hwan;
  PDF(new window)
 Abstract
Conditions for an ideal to be irreducible are provided. The notion of an order system in a subtraction algebra is introduced, and related properties are investigated. Relations between ideals and order systems are given. The concept of a fixed map in a subtraction algebra is discussed, and related properties are investigated.
 Keywords
(weak, complicated) subtraction algebra;(irreducible) ideal;order system;right fixed map;kernel;
 Language
English
 Cited by
1.
SOFT WS-ALGEBRAS,;;;

대한수학회논문집, 2008. vol.23. 3, pp.313-324 crossref(new window)
2.
N-IDEALS OF SUBTRACTION ALGEBRAS,;;;

대한수학회논문집, 2010. vol.25. 2, pp.173-184 crossref(new window)
3.
Bipolar fuzzy ideals of subtraction algebras,;;;

Proceedings of the Jangjeon Mathematical Society, 2011. vol.14. 4, pp.467-477
4.
THE ESSENCE OF SUBTRACTION ALGEBRAS BASED ON N-STRUCTURES,;;

대한수학회논문집, 2012. vol.27. 1, pp.15-22 crossref(new window)
5.
ANSWERS TO LEE AND PARK'S QUESTIONS,;

대한수학회논문집, 2012. vol.27. 1, pp.1-6 crossref(new window)
1.
N-IDEALS OF SUBTRACTION ALGEBRAS, Communications of the Korean Mathematical Society, 2010, 25, 2, 173  crossref(new windwow)
2.
THE ESSENCE OF SUBTRACTION ALGEBRAS BASED ON N-STRUCTURES, Communications of the Korean Mathematical Society, 2012, 27, 1, 15  crossref(new windwow)
3.
ANSWERS TO LEE AND PARK'S QUESTIONS, Communications of the Korean Mathematical Society, 2012, 27, 1, 1  crossref(new windwow)
 References
1.
J. C. Abbott, Semi-Boolean algebras, Matemat. Vesnik 4 (1967), 177-198

2.
J. C. Abbott, Sets, Lattices and Boolean Algebras, Allyn and Bacon, Boston 1969

3.
S. S. Ahn, Y. H. Kim, and K. J. Lee, A relation on subtraction algebras, Sci. Math. Jpn. Online e-2005 (2005), 51-55

4.
G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloq. Publ., Vol. 25, second edition 1984; third edition, 1967, Providence

5.
G. Gratzer, Universal Algebra, 2nd edition, Springer-Verlag, New York Inc., 1979

6.
Y. B. Jun and H. S. Kim, On ideals in subtraction algebras, Sci. Math. Jpn. Online e-2006 (2006), 1081-1086

7.
Y. B. Jun, H. S. Kim, and K. J. Lee, The essence of subtraction algebras, Sci. Math. Jpn. Online e-2006 (2006), 1069-1074

8.
Y. B. Jun, Y. H. Kim, and K. J. Lee, Weak forms of subtraction algebras, Bull. Korean Math. Soc. (submitted) crossref(new window)

9.
Y. B. Jun, Y. H. Kim, and K. A. Oh, Subtraction algebras with additional conditions, Commun. Korean Math. Soc. (submitted). crossref(new window)

10.
Y. B. Jun, H. S. Kim, and E. H. Roh, Ideal theory of subtraction algebras, Sci. Math. Jpn. Online e-2004 (2004), 397-402

11.
Y. B. Jun and K. H. Kim, Prime and irreducible ideals in subtraction algebras, Ital. J. Pure Appl. Math. (submitted)

12.
Y. B. Jun, X. L. Xin, and E. H. Roh, A class of algebras related to BCI-algebras and semigroups, Soochow J. Math. 24 (1998), no. 4, 309-321

13.
Y. H. Kim and H. S. Kim, Subtraction algebras and BCK-algebras, Math. Bohemica 128 (2003), no. 1, 21-24

14.
B. M. Schein, Difference Semigroups, Comm. Algebra 20 (1992), 2153-2169 crossref(new window)

15.
B. Zelinka, Subtraction Semigroups, Math. Bohemica 120 (1995), 445-447