JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SOME FIXED POINT THEOREMS ON FUZZY METRIC SPACES WITH IMPLICIT RELATIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SOME FIXED POINT THEOREMS ON FUZZY METRIC SPACES WITH IMPLICIT RELATIONS
Altun, Ishak; Turkoglu, Duran;
  PDF(new window)
 Abstract
In this paper, we give some fixed point theorems on fuzzy metric spaces with an implicit relation. Our results extend and generalize some fixed point theorems on complete fuzzy metric spaces by using a new technique.
 Keywords
fuzzy metric space;common fixed point;compatible mappings;implicit relation;
 Language
English
 Cited by
1.
COMMON FIXED POINT FOR COMPATIBLE MAPPINGS OF TYPE(α) ON INTUITIONISTIC FUZZY METRIC SPACE WITH IMPLICIT RELATIONS,;

호남수학학술지, 2010. vol.32. 4, pp.663-673 crossref(new window)
2.
Fixed Point Theorem for Common Property(E.A.) and Weak Compatible Functions in Intuitionistic Fuzzy Metric Space,;

International Journal of Fuzzy Logic and Intelligent Systems, 2011. vol.11. 3, pp.149-152 crossref(new window)
3.
COMMON FIXED POINT THEOREM FOR WEAKLY COMMUTING USING IMPLICIT RELATION ON INTUITIONISTIC FUZZY METRIC SPACE,;

호남수학학술지, 2012. vol.34. 1, pp.77-84 crossref(new window)
4.
FIXED POINTS OF OCCASIONALLY WEAKLY COMPATIBLE MAPPINGS USING IMPLICIT RELATION,;;

대한수학회논문집, 2012. vol.27. 3, pp.513-522 crossref(new window)
5.
FIXED POINTS OF CONVERSE COMMUTING MAPPINGS USING AN IMPLICIT RELATION,;;;

호남수학학술지, 2013. vol.35. 2, pp.109-117 crossref(new window)
6.
Common Fixed Point and Example for Type(β) Compatible Mappings with Implicit Relation in an Intuitionistic Fuzzy Metric Space,;

International Journal of Fuzzy Logic and Intelligent Systems, 2014. vol.14. 1, pp.66-72 crossref(new window)
1.
FIXED POINTS OF OCCASIONALLY WEAKLY COMPATIBLE MAPPINGS USING IMPLICIT RELATION, Communications of the Korean Mathematical Society, 2012, 27, 3, 513  crossref(new windwow)
2.
Set-valued mappings in partially ordered fuzzy metric spaces, Journal of Inequalities and Applications, 2014, 2014, 1, 157  crossref(new windwow)
3.
FIXED POINTS OF CONVERSE COMMUTING MAPPINGS USING AN IMPLICIT RELATION, Honam Mathematical Journal, 2013, 35, 2, 109  crossref(new windwow)
4.
Common Fixed Point Theorem for Semi-Compatible and Sub Compatible Maps in Fuzzy Metric Space, International Journal of Applied Physics and Mathematics, 2013, 188  crossref(new windwow)
5.
Common Fixed Point and Example for Type(β) Compatible Mappings with Implicit Relation in an Intuitionistic Fuzzy Metric Space, International Journal of Fuzzy Logic and Intelligent Systems, 2014, 14, 1, 66  crossref(new windwow)
6.
Common Fixed Point for Self-Mappings Satisfying an Implicit Lipschitz-Type Condition in Kaleva-Seikkala's Type Fuzzy Metric Spaces, Abstract and Applied Analysis, 2013, 2013, 1  crossref(new windwow)
7.
Fixed Point Theorem for Common Property(E.A.) and Weak Compatible Functions in Intuitionistic Fuzzy Metric Space, International Journal of Fuzzy Logic and Intelligent Systems, 2011, 11, 3, 149  crossref(new windwow)
8.
Fixed point results for generalized F-contractions in modular metric and fuzzy metric spaces, Fixed Point Theory and Applications, 2015, 2015, 1  crossref(new windwow)
9.
COMMON FIXED POINT FOR COMPATIBLE MAPPINGS OF TYPE(α) ON INTUITIONISTIC FUZZY METRIC SPACE WITH IMPLICIT RELATIONS, Honam Mathematical Journal, 2010, 32, 4, 663  crossref(new windwow)
10.
COMMON FIXED POINT THEOREM FOR WEAKLY COMMUTING USING IMPLICIT RELATION ON INTUITIONISTIC FUZZY METRIC SPACE, Honam Mathematical Journal, 2012, 34, 1, 77  crossref(new windwow)
 References
1.
R. Badard, Fixed point theorems for fuzzy numbers, Fuzzy Sets and Systems 13 (1984), 291-302 crossref(new window)

2.
B. K. Bose and D. Sahani, Fuzzy mappings and fixed point theorems, Fuzzy Sets and Systems 21 (1987), 53-58 crossref(new window)

3.
D. Butnariu, Fixed points for fuzzy mappings, Fuzzy Sets and Systems 7 (1982), 191-207 crossref(new window)

4.
S. S. Chang, Fixed point theorems for fuzzy mappings, Fuzzy Sets and Systems 17 (1985), 181-187 crossref(new window)

5.
S. S. Chang, Y. J. Cho, B. S. Lee, J. S. Jung, and S. M. Kang, Coincidence point and minimization theorems in fuzzy metric spaces, Fuzzy Sets and Systems 88 (1997), 119-128 crossref(new window)

6.
S. S. Chang, Y. J. Cho, B. E. Lee, and G. M. Lee, Fixed degree and fixed point theorems for fuzzy mappings, Fuzzy Sets and Systems 87 (1997), 325-334 crossref(new window)

7.
Y. J. Cho, Fixed points in fuzzy metric spaces, J. Fuzzy Math. 5 (1997), 949-962

8.
Y. J. Cho, H. K. Pathak, S. M. Kang, and J. S. Jung, Common fixed points of compatible maps of type ($\beta$) on fuzzy metric spaces, Fuzzy Sets and Systems 93 (1998), 99-111 crossref(new window)

9.
J. X. Fang, On fixed point theorems in fuzzy metric spaces, Fuzzy Sets and Systems 46 (1992), 107-113 crossref(new window)

10.
A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems 64 (1994), 395-399 crossref(new window)

11.
M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems 27 (1988), 385-389 crossref(new window)

12.
O. Hadzic, Fixed point theorems for multi-valued mappings in some classes of fuzzy metric spaces, Fuzzy Sets and Systems 29 (1989), 115-125 crossref(new window)

13.
M. Imdad, S. Kumar, and M. S. Khan, Remarks on some fixed point theorems satisfying implicit relations, Rad. Math. 11 (2002), 135-143

14.
J. S. Jung, Y. J. Cho, and J. K. Kim, Minimization theorems for fixed point theorems in fuzzy metric spaces and applications, Fuzzy Sets and Systems 61 (1994), 199-207 crossref(new window)

15.
J. S. Jung, Y. J. Cho, S. S. Chang, and S. M. Kang, Coincidence theorems for setvalued mappings and Ekland's variational principle in fuzzy metric spaces, Fuzzy Sets and Systems 79 (1996), 239-250 crossref(new window)

16.
S. N. Mishra, S. N. Sharma, and S. L. Singh, Common fixed points of maps in fuzzy metric spaces, Internat. J. Math. Math. Sci. 17 (1994), 253-258 crossref(new window)

17.
V. Popa, A general coincidence theorem for compatible multivalued mappings satisfying an implicit relation, Demonsratio Math. 33 (2000), 159-164

18.
V. Popa, Some fixed point theorems for compatible mappings satisfying an implicit relation, Demonsratio Math. 32 (1999), 157-163

19.
V. Popa and D. Turkoglu, Some fixed point theorems for hybrid contractions satisfying an implicit relation, Stud. Cercet. Stint. Ser. Math. Univ. Bacau 8 (1998), 75-86

20.
B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math. 10 (1960), 313-334 crossref(new window)

21.
S. Sharma, Common fixed point theorems in fuzzy metric spaces, Fuzzy Sets and Systems 127 (2002), 345-352 crossref(new window)

22.
S. Sharma and B. Desphande, Common fixed points of compatible maps of type ($\beta$) on fuzzy metric spaces, Demonsratio Math. 35 (2002), 165-174

23.
S. Sharma and B. Desphande, On compatible mappings satisfying an implicit relation in common fixed point consideration, Tamkang J. Math. 33 (2002), 245-252

24.
B. Singh and M. S. Chauhan, Common fixed points of compatible maps in fuzzy metric spaces, Fuzzy Sets and Systems 115 (2000), 471-475 crossref(new window)

25.
L. A. Zadeh, Fuzzy sets, Inform and Control 8 (1965), 338-353 crossref(new window)