JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A REMARK ON INVARIANCE OF QUANTUM MARKOV SEMIGROUPS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A REMARK ON INVARIANCE OF QUANTUM MARKOV SEMIGROUPS
Choi, Ve-Ni; Ko, Chul-Ki;
  PDF(new window)
 Abstract
In [3, 9], using the theory of noncommutative Dirichlet forms in the sense of Cipriani [6] and the symmetric embedding map, authors constructed the KMS-symmetric Markovian semigroup on a von Neumann algebra with an admissible function f and an operator . We give a sufficient and necessary condition for x so that the semigroup acts separately on diagonal and off-diagonal operators with respect to a basis and study some results.
 Keywords
quantum Markov semigroups;diagonal operators;invariant subspaces;
 Language
English
 Cited by
 References
1.
L. Accardi, F. Fagnola, and S. Hachicha, Generic q-Markov semigroups and speed of convergence of q-algorithms, Inf. Dim. Anal. Quantum Probab. Related Topics 9 (2006), 567-594 crossref(new window)

2.
S. Albeverio and R. Hoegh-Krohn, Dirichlet forms and Markovian semigroups on C* - algebras, Comm. Math. Phys. 56 (1977), 173-187 crossref(new window)

3.
C. Bahn, C. K. Ko, and Y. M. Park, Dirichlet forms and symmetric Markovian semigroups on CCR algebras with quasi-free states, J. Math. Phys. 44 (2003), 723-753 crossref(new window)

4.
O. Bratteli and D. W. Robinson, Operator algebras and quantum statistical mechanics, Springer-Verlag, New York-Heidelberg-Berlin, vol I (1979), vol. II (1981)

5.
R. Carbone, F. Fagnola, and S. Hachicha, Generic quantum Markov semigroups: the Gaussian gauge invariant case, priprint

6.
F. Cipriani, Dirichlet forms and Markovian semigroups on standard forms of von Neumann algebras, J. Funct. Anal. 147 (1997), 259-300 crossref(new window)

7.
F. Cipriani, F. Fagnola, and J. M. Lindsay, Spectral Analysis and Feller Properties for Quantum Ornstein-Uhlenbeck Semigroups, Comm. Math. Phys. 210 (2000), 85-105 crossref(new window)

8.
F. Fagnola and R. Quezada, Two-photon and emission process, Inf. Dim. Anal. Quantum Probab. Related Topics 8 (2005), 573-591 crossref(new window)

9.
Y. M. Park, Construction of Dirichlet forms on standard forms of von Neumann algebras, Inf. Dim. Anal. Quantum Probab. Related Topics 3 (2000), 1-14 crossref(new window)

10.
K. R. Parthasarathy, An Introduction to Quantum Stochastic Calculus, Birkhauser, Basel, 1992

11.
V. S. Sunder, An Invitation to von Neumann Algebras, Springer-Verlag, Newyork Berlin Heidelberg London Paris Tokyo, 1986