JOURNAL BROWSE
Search
Advanced SearchSearch Tips
NOTES ON A NON-ASSOCIATIVE ALGEBRAS WITH EXPONENTIAL FUNCTIONS III
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
NOTES ON A NON-ASSOCIATIVE ALGEBRAS WITH EXPONENTIAL FUNCTIONS III
Choi, Seul-Hee;
  PDF(new window)
 Abstract
For , all the derivations of the evaluation algebra is found in the paper (see [16]). For of the evaluation algebra is found in the paper (see [2]). For , we find of the evaluation algebra in this paper.
 Keywords
simple;Witt algebra;graded;radical homogeneous equivalent component;order;derivation invariant;
 Language
English
 Cited by
 References
1.
M. H. Ahmadi, K.-B. Nam, and J. Pakianathan, Lie admissible non-associative algebras, Algebra Colloquium 12 (2005), no. 1, 113-120 crossref(new window)

2.
S. H. Choi, Notes on a Non-Associative Algebras with Exponential Functions II, Bull. Korean Math. Soc. 44 (2007), no. 2, 241-246 crossref(new window)

3.
S. H. Choi and K.-B. Nam, The derivation of a restricted Weyl type non-associative algebra, Hadronic Journal 28 (2005), no. 3, 287-295

4.
S. H. Choi and K.-B. Nam, Derivation of symmetric non-associative algebra I, Algebras, Groups and Geometries 22 (2005), no. 3, 341-352

5.
S. H. Choi and K.-B. Nam, Derivations of a restricted Weyl Type Algebra I, Appear, Rocky Mountain Journal of Mathematics, 2007 crossref(new window)

6.
T. Ikeda, N. Kawamoto, and K.-B. Nam, A class of simple subalgebras of generalized W algebras, Proceedings of the International Conference in 1998 at Pusan (Eds. A. C. Kim), Walter de Gruyter Gmbh Co. KG, 2000, 189-202

7.
V. G. Kac, Description of Filtered Lie Algebra with which Graded Lie algebras of Cartan type are Associated, Izv. Akad. Nauk SSSR, Ser. Mat. Tom, 38 (1974), 832-834

8.
N. Kawamoto, A. Mitsukawa, K.-B. Nam, and M.-O. Wang, The automorphisms of generalized Witt type Lie algebras, Journal of Lie Theory 13 (2003), no. 2, 571-576

9.
I. Kaplansky, The Virasoro algebra, Comm. Math. Phys. 86 (1982), no. 1, 49-54 crossref(new window)

10.
K.-B. Nam, On some non-associative algebras using additive groups, Southeast Asian Bulletin of Mathematics 27 (2003), 493-500

11.
K.-B. Nam, Y. Kim, and M.-O. Wang, Weyl-type non-associative algebras I, IMCC Proceedings, 2004, SAS Publishers, 147-155

12.
K.-B. Nam and M.-O.Wang, Notes on some non-associative algebras, Journal of Applied Algebra and Discrete Structured 1 (2003), no. 3, 159-164

13.
K.-B. Nam and S. H. Choi, On the derivations of non-associative Weyl-type algebras, Southeast Asian Bull. Math. 31 (2007), 341-348

14.
A. N. Rudakov, Groups of automorphisms of infinite-dimensional simple Lie algebras, Math. USSR-Izvestija 3 (1969), 707-722 crossref(new window)

15.
R. D. Schafer, Introduction to nonassociative algebras, Dover, 128-138, 1995

16.
M.-O. Wang, J.-G. Hwang, and K.-S. Lee, Some results on non-associative algebras, Bull. Korean Math. Soc. 44 (2007), no. 1, 95-102 crossref(new window)