JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON POTENT RINGS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON POTENT RINGS
Li, Bingjun;
  PDF(new window)
 Abstract
A ring R is called an -ring if each left ideal not contained in the Jacobson radical J(R) contains a non-zero idempotent. If, in addition, idempotents can be lifted modulo J(R), R is called an I-ring or a potent ring. We study whether these properties are inherited by some related rings. Also, we investigate the structure of potent rings.
 Keywords
potent rings;idempotents;Jacobson radical;formal power series ring;
 Language
English
 Cited by
 References
1.
G. Azumaya, Strongly $\pi$-regular ring, J. Fac. Sci. Hokkaido Univ. 13 (1954), 34-39

2.
V. P. Camillo and H. P. Yu, Exchange rings, units and idempotents, Comm. Alg. 22 (1994), no. 12, 4737-4749 crossref(new window)

3.
P. Crawley and B. Jonsson, Refinements for infinite direct decomposition of algebraic systems, Pacific. Math. 14 (1964), 797-855 crossref(new window)

4.
K. R. Goodearl, von Neuman Regular Rings, Pitman, 1979

5.
C. Y. Hong, N. Y. Kim, and Y. Lee, Exchange rings and their extensions, J. Pure and Appl. Alg. 179 (2003), 117-126 crossref(new window)

6.
T. Y. Lam, A First Course in Noncommutative Rings, Springer-Verlag, 1991

7.
W. K. Nicholson, I-rings, Trans. Amer. Math. Soc. 207 (1975), 361-373 crossref(new window)

8.
W. K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 299 (1977), 269-278

9.
J. Stock, On rings whose projective modules have exchange property, J. Alg. 103 (1986), 437-453 crossref(new window)

10.
R. B. Jr. Warfield, Exchange rings and deposition modules, Math. Ann. 199 (1992), 31-36

11.
H. P. Yu, On the structure of exchange rings, Comm. Alg. 25 (1997), no. 2, 661-670 crossref(new window)