JOURNAL BROWSE
Search
Advanced SearchSearch Tips
TOPOLOGICAL PROPERTIES IN BCC-ALGEBRAS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
TOPOLOGICAL PROPERTIES IN BCC-ALGEBRAS
Ahn, Sun-Shin; Kwon, Seok-Hwan;
  PDF(new window)
 Abstract
In this paper, we show how to associate certain topologies with special ideals of BCC-algebras on these BCC-algebras. We show that it is natural for BCC-algebras to be topological BCC-algebras with respect to theses topologies. Furthermore, we show how certain standard properties may arise. In addition we demonstrate that it is natural for these topologies to have many clopen sets and thus to be highly connected via the ideal theory of BCC-algebras.
 Keywords
BCC-algebra;uniformity;(BCC-)ideal;topological BCC-algebras;
 Language
English
 Cited by
 References
1.
W. A. Dudek, The number of subalgebras of finite BCC-algebras, Bull. Inst. Math. Academia Sinica 20 (1992), 129-136

2.
W. A. Dudek, On proper BCC-algebras, Bull. Inst. Math. Academia Sinica 20 (1992), 137-150

3.
W. A. Dudeck and X. Zhang, On ideals and congruences in BCC-algebras, Czecho Math. J. 48(123) (1998), 21-29 crossref(new window)

4.
J. Hao, Ideal Theory of BCC-algebras, Sci. Math. Japo. 3 (1998), 373-381

5.
Y. Imai and K. Iseki, On axiom system of propositional calculi XIV, Proc. Japan Academy 42 (1966), 19-22 crossref(new window)

6.
K. Iseki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon. 23 (1978), 1-26

7.
Y. B. Jun and H. S. Kim, Uniform structures in positive implication algebras, Intern. Math. J. 2 (2002), no. 2, 215-219

8.
Y. B. Jun and E. H. Roh, On uniformities of BCK-algebras, Commun. Korean Math. Soc. 10 (1995), no. 1, 11-14

9.
Y. Komori, The class of BCC-algebras is not a variety, Math. Japon. 29 (1984), 391-394

10.
J. Meng and Y. B. Jun, BCK-algebras, Kyungmoonsa, Seoul, Korea, 1994

11.
B. T. Sims, Fundamentals of Topology, Macmillan Publishing Co., Inc., New York, 1976

12.
A. Wronski, BCK-algebras do not form a variety, Math. Japon. 28 (1983), 211-213

13.
D. S. Yoon and H. S. Kim, Uniform structures in BCI-algebras, Commun. Korean Math. Soc. 17 (2002), no. 3, 403-407 crossref(new window)