JOURNAL BROWSE
Search
Advanced SearchSearch Tips
DEFINABLE Cr FIBER BUNDLES AND DEFINABLE CrG VECTOR BUNDLES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
DEFINABLE Cr FIBER BUNDLES AND DEFINABLE CrG VECTOR BUNDLES
Kawakami, Tomohiro;
  PDF(new window)
 Abstract
Let G and K be compact subgroups of orthogonal groups and <<. We prove that every topological fiber bundle over a definable manifold whose structure group is K admits a unique strongly definable fiber bundle structure up to definable fiber bundle isomorphism. We prove that every G vector bundle over an affine definable manifold admits a unique strongly definable vector bundle structure up to definable vector bundle isomorphism.큺�⨀끹�⨀恸�⨀죽잖⨀处돀ᢰ�⨀⁊렼悚�⨀㄄돐肚�⨀ꢍ�⨀¸鉀㈰〱냫뎸곬鞅ကꇬ납鰀ऀἈ孍ⵚ䬿扜᠘䥇䰕阽뒳浇¸鉀0ꍀ଀ȀЀĀ¸鉀Ἀ孍ⵚ䬿¸鉀扜᠘䥇ᢘ�⨀ကĀ䰕阽뒳浇㢘�⨀ऀȀ扜᠘䥇墘�⨀က䰕阽뒳浇碘�⨀ऀl햨颗�⨀Ȁ扜᠘䥇𵾖⨀ကĀ䰕阽뒳浇�⨀ऀȀ㈰〱냫뎸곬鞅ꇬ납鰀㈰〱냫뎸곬鞅ꇬ납鰀㈰〱냫뎸곬鞅ꇬ납鰀¸鉀㈰〱냫뎸곬鞅ကꇬ납鰀ऀἈ孍ⵚ䬿扜᠘䥇䰕阽뒳浇¸鉀0ꍀ଀Ȁ؀Ā¸鉀Ἀ孍ⵚ䬿¸鉀扜᠘䥇ᢘ�⨀ကĀ䰕阽뒳浇㢘�⨀ऀȀ扜᠘䥇墘�⨀က䰕阽뒳浇碘�⨀ऀ飜�⨀颗�⨀ȀĀ�⨀Ȁ
 Keywords
O-minimal;definable groups;definable groups;definable fiber bundles;definablp fiber bundles; definable G vector bundles;definable vector bundles;
 Language
English
 Cited by
 References
1.
J. Bochnak, M. Coste, and M. F. Roy, Geometie algebrique reelle, Erg. der Math. und ihrer Grenzg., Springer-Verlag, Berlin Heidelberg, 1987

2.
M. J. Choi, T. Kawakami, and D. H. Park, Equivariant semialgebraic vector bundles, Topology Appl. 123 (2002), 383-400 crossref(new window)

3.
H. Delfs and M. Knebusch, Semialgebraic topology over a real closed field II: Basic theory of semialgebraic spaces, Math. Z. 178 (1981), 175-213 crossref(new window)

4.
L. van den Dries, Tame Topology and o-minimal Structures, Lecture notes series 248, London Math. Soc. Cambridge Univ. Press, 1998

5.
L. van den Dries, A. Macintyre, and D. Marker, The elementary theory of restricted analytic field with exponentiation, Ann. Math. 140 (1994), 183-205 crossref(new window)

6.
L. van den Dries and C. Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), 497-540 crossref(new window)

7.
L. van den Dries and P. Speissegger, The real field with convergent generalized power series, Trans. Amer. Math. Soc. 350 (1998), 4377-4421 crossref(new window)

8.
T. Kawakami, Algebraic G vector bundles and Nash G vector bundles, Chinese J. Math. 22 (1994), no. 3, 275-289

9.
T. Kawakami, Definable G CW complex structures of definable G sets and their applications, Bull. Fac. Ed. Wakayama Univ. Natur. Sci. 55 (2004), 1-15

10.
T. Kawakami, Definable G-fiber bundles and definable $C^{r}$G-fiber bundles, Surikaisekiken-kyusho Kokyuroku 1343 (2003), 31-45

11.
T. Kawakami, Equivariant definable $C^{r}$ approximation theorem, definable $C^{r}$G triviality of G invariant definable $C^{r}$ functions and compactifications, Bull. Fac. Ed. Wakayama Univ. Natur. Sci. 55 (2005), 23-36

12.
T. Kawakami, Equivariant differential topology in an o-minimal expansion of the field of real numbers, Topology Appl. 123 (2002), 323-349 crossref(new window)

13.
T. Kawakami, Every definable $C^{r}$ manifold is affine, Bull. Korean Math. Soc. 42 (2005), no. 1, 165-167 crossref(new window)

14.
T. Kawakami, Homotopy property for definable fiber bundles, Bull. Fac. Ed. Wakayama Univ. Natur. Sci. 53 (2003), 1-6

15.
T. Kawakami, Imbedding of manifolds defined on an o-minimal structures on (R;+; .,<), Bull. Korean Math. Soc. 36 (1999), no. 1, 183-201

16.
T. Kawakami, Nash G manifold structures of compact or compactifiable $C^\infty$G manifolds, J. Math. Soc. Japan 48 (1996), 321-331 crossref(new window)

17.
K. Kawakubo, The Theory of Transformation Groups, Oxford Univ. Press, 1991

18.
R. K. Lashof, Equivariant Bundles, Illinois J. Math. 26 (1982), no. 2, 257-271

19.
C. Miller, Expansion of the field with power functions, Ann. Pure Appl. Logic 68 (1994), 79-94 crossref(new window)

20.
A. L. Onishchik and E. B. Vinberg, Lie Groups and Algebraic Groups, Springer-Verlag, Berlin, 1990

21.
J. P. Rolin, P. Speissegger, and A. J. Wilkie, Quasianalytic Denjoy-Carleman classes and o-minimality, J. Amer. Math. Soc. 16 (2003), 751-777 crossref(new window)

22.
M. Shiota, Geometry of subanalytic and semialgebraic sets, Progress in Math. 150 (1997), Birkhauser

23.
M. Shiota, Nash Manifolds, Lecture Note in Math. 1269, Springer-Verlag, 1987

24.
N. Steenrod, The Topology of Fiber Bundles, Princeton University Press, 1974

25.
A. Wilkie, Model completeness results for expansions of the real field by restricted Pfaffian functions and exponential functions, J. Amer. Math. Soc. 9 (1996), 1051-1094 crossref(new window)