JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SUPERSTABILITY OF A GENERALIZED EXPONENTIAL FUNCTIONAL EQUATION OF PEXIDER TYPE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SUPERSTABILITY OF A GENERALIZED EXPONENTIAL FUNCTIONAL EQUATION OF PEXIDER TYPE
Lee, Young-Whan;
  PDF(new window)
 Abstract
We obtain the superstability of a generalized exponential functional equation f(x+y)=E(x,y)g(x)f(y) and investigate the stability in the sense of R. Ger [4] of this equation in the following setting: where E(x, y) is a pseudo exponential function. From these results, we have superstabilities of exponential functional equation and Cauchy's gamma-beta functional equation.
 Keywords
exponential functional equation;stability of functional equations;superstability of functional equations;Cauchy functional equation;
 Language
English
 Cited by
 References
1.
J. Baker, The stability of the cosine equations, Proc. Amer. Math. Soc. 80 (1980), 411-416 crossref(new window)

2.
J. Baker, J. Lawrence, and F. Zorzitto, The stability of the equation f(x + y) = f(x) + f(y), Proc. Amer. Math. Soc. 74 (1979), 242-246 crossref(new window)

3.
G. L. Forti, Hyers-Ulam stability of functional equations in several variables, Aequationes Math. 50 (1995), 146-190 crossref(new window)

4.
R. Ger, Superstability is not natural, Rocznik Naukowo-Dydaktyczny WSP Krakkowie, Prace Mat. 159 (1993), 109-123

5.
D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A. 27 (1941), 222-224 crossref(new window)

6.
D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequatioues Math. 44 (1992), 125-153 crossref(new window)

7.
D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser-Basel-Berlin, 1998

8.
K. W. Jun, G. H. Kim, and Y. W. Lee, Stability of generalized gamma and beta functional equations, Aequation Math. 60 (2000), 15-24 crossref(new window)

9.
S.-M. Jung, On the general Hyers-Ulam stability of gamma functional equation, Bull. Korean Math. Soc. 34 (1997), no. 3, 437-446

10.
S.-M. Jung, On the stability of the gamma functional equation, Results Math. 33 (1998), 306-309 crossref(new window)

11.
G. H. Kim and Y. W. Lee, The stability of the beta functional equation, Babes-Bolyai Mathematica, XLV (1) (2000), 89-96

12.
Y. W. Lee, On the stability of a quadratic Jensen type functional equation, J. Math. Anal. Appl. 270 (2002), 590-601 crossref(new window)

13.
Y. W. Lee, The stability of derivations on Banach algebras, Bull. Institute of Math. Academia Sinica 28 (2000), 113-116

14.
Y. W. Lee and B. M. Choi, The stability of Cauchy's gamma-beta functional equation, J. Math. Anal. Appl. 299 (2004), 305-313 crossref(new window)

15.
Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300 crossref(new window)

16.
Th. M. Rassias, The problem of S. M. Ulam for approximately multiplication mappings, J. Math. Anal. Appl. 246 (2000), 352-378 crossref(new window)

17.
S. M. Ulam, Problems in Modern Mathematics, Proc. Chap. VI. Wiley, NewYork, 1964