JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON QUASI EINSTEIN MANIFOLDS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON QUASI EINSTEIN MANIFOLDS
De, Uday Chand; De, Biman Kanti;
  PDF(new window)
 Abstract
The object of the present paper is to study some properties of a quasi Einstein manifold. A non-trivial concrete example of a quasi Einstein manifold is also given.
 Keywords
quasi Einstein manifolds;cyclic Ricci tensor;Killing vector field;
 Language
English
 Cited by
1.
ON QUASI EINSTEIN MANIFOLDS,;;

대한수학회논문집, 2008. vol.23. 3, pp.413-420 crossref(new window)
2.
ON SOME CLASSES OF GENERALIZED QUASI-EINSTEIN MANIFOLDS,;;

대한수학회논문집, 2009. vol.24. 3, pp.415-424 crossref(new window)
3.
ERRATUM TO "ON LORENTZIAN QUASI-EINSTEIN MANIFOLDS, J. KOREAN MATH. SOC. 48 (2011), NO. 4, PP. 669-689",;;;

대한수학회지, 2011. vol.48. 6, pp.1327-1328 crossref(new window)
1.
ERRATUM TO "ON LORENTZIAN QUASI-EINSTEIN MANIFOLDS, J. KOREAN MATH. SOC. 48 (2011), NO. 4, PP. 669-689", Journal of the Korean Mathematical Society, 2011, 48, 6, 1327  crossref(new windwow)
2.
On Pseudo Ricci Symmetric Manifolds, Annals of the Alexandru Ioan Cuza University - Mathematics, 2012, 58, 1  crossref(new windwow)
 References
1.
A. L. Besse, Einstein Manifolds, Ergeb. Math. Grenzgeb., 3. Folge, Bd. 10, Springer-Verlag, Berlin, Heidelberg, New York, 1987

2.
M. C. Chaki and R. K. Maity, On quasi Einstein manifolds, Publ. Math. Debrecen 57 (2000), 297-306

3.
M. C. Chaki, On generalized quasi-Einstein manifolds, Publ. Math. Debrecen 58 (2001), 683-691

4.
U. C. De and G. C. Ghosh, On quasi Einstein and special quasi Einstein manifolds, Proc. of the Int. Conf. of Mathematics and its applications, Kuwait University, April 5-7, 2004, 178-191

5.
U. C. De, On quasi-Einstein manifolds, Periodica Math. Hungarica 48 (2004), 223-231 crossref(new window)

6.
U. C. De, On conformally flat special quasi-Einstein manifolds, Publ. Math. Debrecen 66 (2005), 129-136

7.
R. Deszcz, M. Glogowska, M. Hotlos, and Z. Senturk, On certain quasi-Einstein semisymmetric hypersurfaces, Annales Univ. Sci. Budapest. Eotovos Sect. Math. 41 (1998), 151-164

8.
R. Deszcz, M. Hotlos, and Z. Senturk, On curvature properties of quasi-Einstein hypersurfaces in semi-Euclidean spaces, Soochow J. Math. 27 (2001), 375-389

9.
D. Ferus, A remark on Codazzi tensors in constant curvature space, Lecture note in Mathematics, 838, Global Differential Geometry and Global Analysis, Springer Verlag, New York, (1981), p. 257

10.
S. R. Guha, On quasi-Einstein and generalized quasi-Einstein manifolds, Facta Universitatis 3 (2003), 821-842

11.
U. H. Ki and H. Nakagawa, A characterization of the Cartan hypersurfaces in a sphere, Tohoku Math. J. 39 (1987), 27-40

12.
M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan 14 (1962), 333-340 crossref(new window)

13.
M. Obata, Conformal transformations in Riemannian manifolds, Sigaku Math. Soc. Japan 14 (1963), 152-164

14.
M. Obata, Riemannian manifolds admitting a solution of certain system of differential equations, Proc. United States-Japan Seminar in Differential Geometry, Kyoto, Japan, 1965, pp. 101-114

15.
K. Yano, Integral Formulas in Riemannian Geometry, Marcel Dekker, New York, 1970