JOURNAL BROWSE
Search
Advanced SearchSearch Tips
RIGIDITY OF MINIMAL SUBMANIFOLDS WITH FLAT NORMAL BUNDLE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
RIGIDITY OF MINIMAL SUBMANIFOLDS WITH FLAT NORMAL BUNDLE
Seo, Keom-Kyo;
  PDF(new window)
 Abstract
Let be a complete immersed super stable minimal submanifold in with fiat normal bundle. We prove that if M has finite total norm of its second fundamental form, then M is an affine n-plane. We also prove that any complete immersed super stable minimal submanifold with flat normal bundle has only one end.
 Keywords
minimal submanifolds;Bernstein type theorem;flat normal bundle;
 Language
English
 Cited by
1.
ON THE STRUCTURE OF MINIMAL SUBMANIFOLDS IN A RIEMANNIAN MANIFOLD OF NON-NEGATIVE CURVATURE,;;

대한수학회보, 2009. vol.46. 6, pp.1213-1219 crossref(new window)
1.
L2 harmonic 1-forms on minimal submanifolds in hyperbolic space, Journal of Mathematical Analysis and Applications, 2010, 371, 2, 546  crossref(new windwow)
2.
Rigidity of minimal submanifolds with flat normal bundle, Proceedings - Mathematical Sciences, 2010, 120, 4, 457  crossref(new windwow)
3.
ON THE STRUCTURE OF MINIMAL SUBMANIFOLDS IN A RIEMANNIAN MANIFOLD OF NON-NEGATIVE CURVATURE, Bulletin of the Korean Mathematical Society, 2009, 46, 6, 1213  crossref(new windwow)
4.
Bernstein type theorems for complete submanifolds in space forms, Mathematische Nachrichten, 2012, 285, 2-3, 236  crossref(new windwow)
 References
1.
H. Cao, Y. Shen, and S. Zhu, The structure of stable minimal hypersurfaces in $R^{n+1}$, Math. Res. Lett. 4 (1997), 637-644 crossref(new window)

2.
S. S. Chern, M. do Carmo, and S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, Functional Analysis and Related Fields, Springer-Verlag 1970, 59-75

3.
M. do Carmo and C. K. Peng, Stable complete minimal surfaces in $R^{3}$ are planes, Bull. Amer. Math. Soc. (N.S.) 1 (1979), 903-906 crossref(new window)

4.
M. do Carmo, Stable complete minimal hypersurfaces, Proc. Beijing Symp. Differential Equations and Differential Geometry 3 (1980), 1349-1358

5.
D. Fischer-Colbrie and R. Schoen, The structure of complete stable minimal surfaces in 3-manifolds of nonnegative scalar curvature, Comm. Pure Appl. Math. 33 (1980), 199-211 crossref(new window)

6.
P. F. Leung, An estimate on the Ricci curvature of a submanifold and some applications, Proc. Amer. Math. Soc. 114 (1992), 1051-1063 crossref(new window)

7.
J. Michael and L. M. Simon, Sobolev and mean-value inequalities on generalized submanifolds of $R^{n}$, Comm. Pure. Appl. Math. 26 (1973), 361-379 crossref(new window)

8.
R. Schoen and S.-T. Yau, Harmonic maps and the topology of stable hypersurfaces and manifolds with nonnegative Ricci curvature, Comment. Math. Helv. 51 (1976), 333-341 crossref(new window)

9.
Y. Shen and X. Zhu, On stable complete minimal hypersurfaces in $R^{n+1}$, Amer. J. Math. 120 (1998), 103-116 crossref(new window)

10.
K. Smoczyk, G. Wang, and Y. Xin, Bernstein type theorems with flat normal bundle, Calc. Var. PDE. 26 (2006), 57-67 crossref(new window)

11.
J. Spruck, On stable complete minimal hypersurfaces in $R^{n+1}$, Amer. J. Math. 120 (1998), 103-116 crossref(new window)

12.
C. Terng, Submanifolds with flat normal bundle, Math. Ann. 277 (1987), 95-111 crossref(new window)

13.
Q. Wang, On minimal submanifolds in an Euclidean space, Math. Nachr. 261/262 (2003), 176-180 crossref(new window)

14.
Y. Xin, Bernstein type theorems without graphic condition, Asian J. Math. 9 (2005), 31-44 crossref(new window)