JOURNAL BROWSE
Search
Advanced SearchSearch Tips
WEIERSTRASS POINTS ON Γ0(p) AND ITS APPLICATION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
WEIERSTRASS POINTS ON Γ0(p) AND ITS APPLICATION
Choi, Do-Hoon;
  PDF(new window)
 Abstract
In this note, we study arithmetic properties for the exponents of modular forms on for primes p. Our aim is to refine the result of [4] by using the geometric property of the modular curve of .
 Keywords
modular forms;one variable;congruences for modular forms;
 Language
English
 Cited by
 References
1.
S. Ahlgren, The theta-operator and the divisors of modular forms on genus zero subgroups, Math. Res. Lett. 10 (2003), 787-798 crossref(new window)

2.
S. Ahlgren and K. Ono Weierstrass points on $X_{0}$(p) and supersingular j-invariants, Math. Ann. 325 (2003), no. 2, 355-368 crossref(new window)

3.
J. Bruinier, W. Kohnen, and K. Ono, The arithmetic of the values of modular functions and the divisors of modular forms, Compos. Math. 140 (2004), 552-566 crossref(new window)

4.
D. Choi, On values of a modular form on $\Gamma_{0}$(N), Acta Arith. 121 (2006), no. 4, 299-311 crossref(new window)

5.
S. Choi, The values of modular functions and modular forms, Canad. Math. Bull. 49 (2006), no. 4, 526-535 crossref(new window)

6.
W. Eholzer and N.-P. Skoruppa, Product expansions of conformal characters, Phys. Lett. B 388 (1996), no. 1, 82-89 crossref(new window)

7.
H. M. Farkas and I. Kra, Riemann Surfaces, Springer-Verlag, New York, 1992

8.
A. Ogg, On the Weierstrass points of $X_{0}$(N), Illinois J. Math. 22 (1978), no. 1, 31-35

9.
J.-P. Serre, Divisibilite des coefficients des formes modulaires de poids entier, C. R. Acad. Sci. Paris Ser. A 279 (1974), 679-682