JOURNAL BROWSE
Search
Advanced SearchSearch Tips
BLOW-UP FOR A NON-NEWTON POLYTROPIC FILTRATION SYSTEM WITH NONLINEAR NONLOCAL SOURCE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
BLOW-UP FOR A NON-NEWTON POLYTROPIC FILTRATION SYSTEM WITH NONLINEAR NONLOCAL SOURCE
Zhou, Jun; Mu, Chunlai;
  PDF(new window)
 Abstract
This paper deals the global existence and blow-up properties of the following non-Newton polytropic filtration system, $${u_t}-{\triangle}_{m,p}u
 Keywords
non-Newtonian polytropic system;nonlocal source;global existence;blow-up;
 Language
English
 Cited by
1.
LOCAL AND GLOBAL EXISTENCE AND BLOW-UP OF SOLUTIONS TO A POLYTROPIC FILTRATION SYSTEM WITH NONLINEAR MEMORY AND NONLINEAR BOUNDARY CONDITIONS,;;;

대한수학회보, 2013. vol.50. 1, pp.37-56 crossref(new window)
1.
LOCAL AND GLOBAL EXISTENCE AND BLOW-UP OF SOLUTIONS TO A POLYTROPIC FILTRATION SYSTEM WITH NONLINEAR MEMORY AND NONLINEAR BOUNDARY CONDITIONS, Bulletin of the Korean Mathematical Society, 2013, 50, 1, 37  crossref(new windwow)
2.
Blow-up for an evolution p-laplace system with nonlocal sources and inner absorptions, Boundary Value Problems, 2011, 2011, 1, 29  crossref(new windwow)
 References
1.
J. R. Anderson and K. Deng, Global existence for degenerate parabolic equations with a non-local forcing, Math. Anal. Methods Appl. Sci. 20 (1997), 1069-1087 crossref(new window)

2.
M. F. Bidanut-Veon and M. Garcıa-Huidobro, Regular and singular solutions of a quasilinear equation with weights, Asymptotic Anal. 28 (2001), 115-150

3.
K. Deng and H. A. Levine, The role of critical exponents in blow-up theorems: The sequel, J. Math. Anal. Appl. 243 (2000), 85-126 crossref(new window)

4.
E. Dibenedetto, Degenerate Parabolic Equations, Springer-Verlag, Berlin, New York, 1993

5.
J. I. Diaz, Nonlinear Partial Differential Equations and Free Boundaries, in Elliptic Equations, Vol 1, Pitman, London, 1985

6.
W. B. Deng, Global existence and finite time blow up for a degenerate reaction-diffusion system, Nonlinear Anal. 60 (2005), 977-991 crossref(new window)

7.
W. B. Deng, Y. X. Li, and C. H. Xie, Blow-up and global existence for a nonlocal degenerate parabolic system, J. Math. Anal. Appl. 277 (2003), 199-217 crossref(new window)

8.
L. L. Du, Blow-up for a degenerate reaction-diffusion system with nonlinear nonlocal sources, J. Comput. Appl. Math. 202 (2007), 237-247 crossref(new window)

9.
Z. W. Duan, W. B. Deng, and C. H. Xie, Uniform blow-up profile for a degenerate parabolic system with nonlocal source, Comput. Math. Appl. 47 (2004), 977-995 crossref(new window)

10.
V. A. Galaktionov, S. P. Kurdyumov, and A. A. Samarskii, A parabolic system of quasilinear equations I, Differential Equations 19 (1983), 1558-1571

11.
V. A. Galaktionov, A parabolic system of quasi-linear equations II, Differential Equations 21 (1985), 1049-1062

12.
V. A. Galaktionov and H. A. Levine, On critical Fujita exponents for heat equations with nonlinear flux conditions on the boundary, Israel J. Math. 94 (1996), 125-146 crossref(new window)

13.
V. A. Galaktionov and J. L. V'azquez, The problem of blow-up in nonlinear parabolic equations, Dist. Cont. Dyn. Systems 8 (2002), 399-433 crossref(new window)

14.
H. Ishii, Asymptotic stability and blowing up of solutions of some nonlinear equations, J. Differential Equations 26 (1997), 291-319 crossref(new window)

15.
A. S. Kalashnikov, Some Problems of the qualitative theory of nonlinear degenerate parabolic equations of second order, Russian Math. Surveys 42 (1987), 169-222 crossref(new window)

16.
H. A. Levine, The role of critical exponents in blow up theorems, SIAM Rev. 32 (1990), 262-288 crossref(new window)

17.
H. A. Levine and L. E. Payne, Nonexistence theorems for the heat equation with nonlinear boundary conditions for the porous medium equation backward in time, J. Differential Equations 16 (1974), 319-334 crossref(new window)

18.
F. C. Li and C. H. Xie, Global and blow-up solutions to a p-Laplacian equation with nonlocal source, Comput. Math. Appl. 46 (2003), 1525-1533 crossref(new window)

19.
F. C. Li, Global existence and blow-up for a nonlinear porous medium equation, Appl. Math. Lett. 16 (2003), 185-192 crossref(new window)

20.
Y. X. Li and C. H. Xie, Blow-up for p-Laplacian parabolic equations, J. Differential Equations 20 (2003), 1-12 crossref(new window)

21.
P. Lindqvist, On the equation ${\nabla}{\cdot}$$({\left|}{\nabla}{u}{\right|}^{p-2}\nabla{u})$ = 0, Pro. Amer. Math. Soc. 109 (1990), 157-164 crossref(new window)

22.
P. Lindqvist, On the equation ${\nabla}{\cdot}$$({\left|}{\nabla}{u}{\right|}^{p-2}\nabla{u})$= 0, Pro. Amer. Math. Soc. 116 (1992), 583-584 crossref(new window)

23.
A. de Pablo, F. Quiros, and J. D. Rossi, Asymptotic simplification for a reactiondiffusion problem with a nonlinear boundary condition, IMA J. Appl. Math. 67 (2002), 69-98 crossref(new window)

24.
F. Quiros and J. D. Rossi, Blow-up sets and Fujita type curves for a degenerate parabolic system with nonlinear boundary conditions, Indiana Univ. Math. J. 50 (2001), 629-654 crossref(new window)

25.
A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, and A. P. Mikhailov, Blow-up in Quasilinear Parabolic Equations, Walter de Gruyter, Berlin, 1985

26.
W. J. Sun and S. Wang, Nonlinear degenerate parabolic equation with nonlinear boundary condition, Acta Mathematica Sinica, English Series 21 (2005), 847-854 crossref(new window)

27.
M. Tsutsumi, Existence and nonexistence of global solutions for nonlinear parabolic equations, Publ. Res. Inst. Math. Sci. 8 (1972), 221-229 crossref(new window)

28.
J. L. Vazquez, The porous Medium Equations: Mathematical Theory, Oxford Univ. Press to appear

29.
S. Wang, Doubly Nonlinear Degenerate parabolic Systems with coupled nonlinear boundary conditions, J. Differential Equations 182 (2002), 431-469 crossref(new window)

30.
Z. Q. Wu, J. N. Zhao, J. X. Yin, and H. L. Li, Nonlinear Diffusion Equations, Word Scientific Publishing Co., Inc., River Edge, NJ, 2001

31.
J. Zhao, Existence and nonexistence of solutions for ut −${\nabla}{\cdot}$$({\left|}{\nabla}{u}{\right|}^{p-2}\nabla{u})$ = f(${\nabla}$u, u, x, t), J. Math. Anal. Appl. 173 (1993), 130-146 crossref(new window)

32.
S. N. Zheng, X. F. Song, and Z. X. Jiang, Critical Fujita exponents for degenerate parabolic equations coupled via nonlinear boundary flux, J. Math. Anal. Appl. 298 (2004), 308-324 crossref(new window)

33.
J. Zhou and C. L. Mu, On critical Fujita exponent for degenerate parabolic system coupled via nonlinear boundary flux, Proc. Edinb. Math. Soc. (in press) crossref(new window)

34.
J. Zhou, The critical curve for a non-Newtonian polytropic filtration system coupled via nonlinear boundary flux, Nonlinear Anal. 68 (2008), 1-11 crossref(new window)

35.
J. Zhou, Global existence and blow-up for non-Newton polytropic filtration system coupled with local source, Glasgow Math. J. (in press) crossref(new window)

36.
J. Zhou, Global existence and blow-up for non-Newton polytropic filtration system with nonlocal source, ANZIAM J. (in press) crossref(new window)