JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE MINIMUM MODULUS OF A LINEAR MAP IN OPERATOR SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
THE MINIMUM MODULUS OF A LINEAR MAP IN OPERATOR SPACES
Kye, Seung-Hyeok;
  PDF(new window)
 Abstract
For a completely bounded linear maps between operator spaces, we introduce numbers which measure the degree of injectivity and subjectivity. The number measuring the injectivity is an operator space analogue of the minimum modulus of a linear map in normed spaces.
 Keywords
minimum modulus;isometries;quotient maps;operator spaces;
 Language
English
 Cited by
 References
1.
C. Apostol, The reduced minimum modulus, Michigan Math. J. 32 (1985), 279-294 crossref(new window)

2.
D. P. Blecher and C. Le Merdy, Operator Algebras and Their Modules, London Math. Soc. Monograph, N. S. Vol. 30, Oxford Sc. Publ., 2004

3.
E. G. Effros and Z.-J. Ruan, Operator Spaces, London Math. Soc. Monograph, N. S. Vol. 23, Oxford Sc. Publ., 2000

4.
E. G. Effros and C. Webster, Operator analogues of locally convex spaces, Operator Algebras and Applications (Samos, 1996), pp. 163-207, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 495, Kluwer Acad. Publ., Dordrecht, 1997

5.
H. A. Gindler and A. E. Taylor, The minimum modulus of a linear operator and its use in spectral theory, Studia Math. 22 (1962), 15-41

6.
S. Goldberg, Unbounded Linear Operators: Theory and Applications, McGraw-Hill, 1966

7.
I. S. Hwang and W. Y. Lee, The reduced minimum modulus of operators, J. Math. Anal. Appl. 267 (2002), 679-694 crossref(new window)

8.
T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, 1966

9.
S.-H. Kye and Z.-J. Ruan, On the local lifting property for operator spaces, J. Funct. Anal. 168 (1999), 355-379 crossref(new window)

10.
G. Pisier, Introduction to Operator Space Theory, London Math. Soc. Lecture. Note Ser. Vol. 294, Cambridge. Univ. Press, 2003

11.
Z.-J. Ruan, Subspaces of C*-algebras, J. Funct. Anal. 76 (1988), 217-230 crossref(new window)